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ABSTRACT 

In most studies of the structure of sequential machines there 

has  been a tacit  assumption that the machine was to be realized with 

unit delay memory elements. In this  report we consider the sequen- 

tial machines that are  realized with either trigger or set-reset flip- 

f lop memory elements. 

It is shown that the relation called a partition pair which pre- 

d ic t s  the dependence of the input functions to  unit delay memory ele- 

ments does not predict the dependence of the input functions to trigger 

or set-reset flip-flop memory elements. In this  paper we define rela- 

t ions called t-pairs and r-pairs which characterize the dependence of 

the input functions to  trigger and set-reset  flip-flop memory elements 

respectively. It is found that these relations do not have all the 

algebraic properties that partition pairs possess .  

Feedback in sequential machines that are  realized with trigger 

or set-reset flip-flop memory elements is a l s o  studied. A method is 

given for determining when a machine can  be realized with either trigger 

or set-reset  flip-flop memory elements using function f for feedback. 

It is shown that if a sequential machine can  be realized with unit delay 

memory elements using a function f for feedback then it can  be realized 

with set-reset  flip-flops using f for feedback. It is a l s o  shown that for 
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completely specified machines that i f  a machine c a n  be realized without 

feedback using unit delay memory elements then it cannot be realized 

without feedback using trigger flip-flop memory elements. 

statement is a l s o  true. 

The converse 
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CHAPTER I 

I 

Introductory Concepts 

This report is concerned with the structure of synchronous 

sequential machines that are realized with trigger or set-reset flip- 

flop memory elements. Hartmanis and Stearns have considered this  

problem for delay type memory elements. A familiarity with their re- 

su l t s  which are  in the references would be useful in understanding th i s  

paper. We shall  now state some well known preliminary concepts. 

Definition 1. A sequential machine is a five tuple 

M = ({SI , {x ] ,  { O ]  , 6 , h ) .  Where 

1. { s) is a finite set called the states of M .  

2 .  {XI is a finite set called the inputs to M.  

3 .  { 01 is a finite set called the outputs of M .  

4 .  6 is a function with the domain of 6 a subset of { s] x {XI 
and range a subset  of { s) . That is ti:{ s] x {x] 4 { s) . 

5. X is a function with domain a subset of { s] x {x] and range 

{ O ]  e Thus X : { s ] x  {x] { O ] .  

For our purposes and { O ]  are  not important and we suppose 

the  inputs to  be n-tuples of {0 ,  11. 

on  the s t a t e s  of a machine M .  These partitions will be denoted by 

Greek le t ters .  A definition and an example of this  concept follows. 

Frequently we d iscuss  partitions 
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Definition 2 .  

s e t s  of {s] such that 

2 

A partition p on a set { s ]  is a collection of sub- 

1. U A =  { s ]  

2 .  If A and B are  in p ,  then A n B  = cp. 

Ac P 

Example. If { s] = { 1 , 2 , 3 , 4 , 5 ]  then a partition p is given by 

p = { { I f  23, {3,4]  { S ] ] .  It is more convenient, however, to use the 
--- 

notation p = (1,2;3,4;5). The subsets  of p are  often called blocks of 

p . For example 1 , 2  is a block of p .  When we d iscuss  partitions we 

frequently need to d iscuss  their blocks. If p is a partition on a set { s ]  

and if a s  { SI, then p[a] will denote the block of p which contains a .  In 

the above example p [3] = 3,4 .  
- 

A trigger flip-flop is the two s ta te  sequential machine specified 

in Figure 1. 

s T  

1 0  

1 1  

2 0  

2 1  

A particular input to a trigger flip-flop will be  denoted by T .  

6 ( s , T )  A(s ,T)  

{ s ]  = [ 1 , 2 ]  states 

{x] = { O f  13 inputs 

{ O ]  = { O ,  13 output 

Figure 1 

If we are discussing more than one trigger flip-flop,we will index them 

with integers and refer to  the ith flip-flop with input T .  where i is a n  
1 

integer. 
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A set-reset flip-flop is the two state machine specified in 

Figure 2 .  A set-reset flip-flop h a s  2 inputs. A particular input will 

be denoted by (S, R) where S is called the set input and R is called the 

reset  input. Again if we are  discussing more than one set-reset flip- 

th flop we shall  index them with integers and refer to the i flip-flop 

with inputs R .  and S.  where i is an integer. 
1 1 

s S R S ( s , S , R )  X(s,S,R) 

1 0 0  

1 0 1  

1 1 0  

2 0 0  

2 0 1  

2 1 0  

{ s ]  = { 1 , 2 ]  

{x] = { O ,  13 X C O ,  13 

{ 01 = { O n  11 

Figure 2 

The next definition is that of a weak partition pair which is 

discussed in Reference 3.  Our notation for a partition pair will be 

somewhat different than that of Hartmanis and Stearns. 

Definition 3 .  Let  T and p be state partitions on machine 

M = ( {  s] , { X I ,  { 0],6, A). Then ~-I'pl'p iff p [6 (a, x)] = p [6 (b, x)] for every 

two states a and b such that ~ [ a ]  = ~ [ b l  and for every input x such that 

6(a,x) and 6(b,x)  a re  defined. 
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The following resul ts  are some properties of weak partition pairs 

which we shall  merely list since they are  proved in  Reference 3. But 

first  we must define what we mean by one partition being greater than 

another and we must also define how we multiply and add partitions. 

Definition 4 .  L e t  T ,  p be  partitions on { s }  . Then T 2 p i f f  

~ [ a ]  - > p [a] for every S C { S ] .  Recall that ~ [ a ]  and p[a] are  sets. 

-- 
For example if {s} = { 1 , 2 , 3 , 4 , 5 ] ,  T = (1 ,2;3,4,5)  and 

--- 
p = (1,2;3,4;5) t h e n T L p .  

Definition 5 .  Let T and p be partitions on { s) . Then T + p = y 

where y is the  smallest partition (equivalence relation) which contains 

both T and p . This is characterized by the property that i f  a ,  be { s) then 

1' y[al = y[b] if and only if  there exists a , . . . , a  in  { s}  such that a = a 

a = b and for every i such tha t  1 < i e k- 1 either T [a .I = T [ai+,] or 

1 k 

1 - -  k 

--- 
Example. Let  { s ]  = { 1 , 2 , 3 , 4 , 5 } ,  p = (1,2;3,4;5) and 

---- - 
T = (1;2,3;4;5). Then T + p = (1 ,2 ,3 ,4 ;5) .  

Definition 6 .  Let  T and p be partitions on { s]  . Then T p = y 

where y is a partition on {s} such that  for e v e r y a , b e { s )  

T [a] = T [bl and p [a] = p [bl . 
y[al=y[bl iff 
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Result 1 (Lemma).  

L e t  M = ( { s ] , { x ] , { 0 ] , 6 , h )  b e a  machine. 

1. If T " p ' ' p  and if ~2 p ,  thenT'Ip"y. 

2 .  If T " p " p  and if a < T ,  then cyI'p'lp. - 
3. If M is completely specified; that is, if the domain of 

6 is { s ]  x{x], then ~ ~ ' ~ p ' ' p  and T "p"p 1 2 2 implies that  

In order to realize a machine M it is necessary to code the 

s ta tes  of M into n tuples of { O ,  13. The coding function will be called 

h and h: { s] 4 { 0,  1ln is a 1- 1 function. The ith projection of h will be 

called h.  that  is for every state h.( s) = y.  where h(s) = (yl ,  , . . , yi, . . . , yn) 
1 1 1 

and yi is in [ 0 , 1 ]  . It should be noted that our concept of a realization 

and that of Reference 3 a re  not the same in  that we do not expand the 

machine. 

n 
We a re  often interested in subspaces of {O, 13 . To be specific, 

5 
let n = 5. ( y l , . .  . ,yn) = ( O , l , O ,  1,1) is in { O , 1 ]  . We want a general 

1' ' * I  n way to refer to specific coordinates of (y 

and 5 where (y , y ) = ( 0 , l )  an  element of { 0,  13 . We will use the 

fo l lowingformal i smtodoth is .  I f A L [ l ,  ..., "3, w e l e t  {O, l . )  be { O , l ] j  

where j is the number of elements in A .  If y = (y l ,  . . . , yn) 8 { 0 , 1 ]  , we 

y ) ,  say  coordinates 3 

2 
3 5  

A 

n 
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< i  
A 1 j 1 2  j 

denote b y y  the j tuple (yi , . . . , y i )  c [ O , l ]  A where i < i < ' 0 -  

and i l , i2 , . .  . I  i. a re  all in A .  In the above example A = {3,5], 

= ( O , l , O , l ,  1) then 
( Y 1  n { 0 ,  1 j A  = { 0 ,  13 and when y =  

J 
2 ,.. . , y  

A 
Y* = (0,1) c [ O J ]  . 

If we are given a coding function h: { s] -, [ O ,  1) n for a machine 

M we can assoc ia te  the following partitions with it. For every 

i c { l , . . . , n ]  w e d e f i n e t h e p a r t i t i o n p .  byp.[a:a]=p.[b] i f f h . ( a ) =  h.(b). 
1 1 1 1 1 

We call p , the partition associated with h Conversely given a two 

block partition p .  on a machine M we can define a function h.  on { s} 

such that h . (a)  = 1 if a is in  block 1 of p .  and h.(a) = 0 if a is in block 

2 of p i .  This h .  will be  called the function associated with p 

are  n such p then h(a) = (hl(a),  . . , , h (a)) is 1-1 if n p i  = 0' the zero 

partition. Often we are given A < [ 1, . . . , n] and we want to d iscuss  

1 i ' 

1 1 

1 1 1 

If there 
1 i' n 

1 i n 

- 
h (a) for a B {  s} . It should be noted that if T = II p .  then ~ [ a ]  = T [b] 

implies that  h (b). 
A 1  A 

A 

E we code zaehiiie =E; h i i i t G  {O, : jn  ilien 1-1 iieed not be onio. 

n We denote by Y.  a function such that Y.:{O, 1) 

Yi(h(a),x) = h.(6(a,x)) for every a S { S ]  and xe{x]. Thus Y. is a n  ex- 

n tension of the ith next state function to all of [ 0,  1} , 

x {x] -.) { 0 , 1 ]  and 
1 1 

1 1 

A problem in many of our resul ts  is filling in the "don' t care" 

terms properly. In the results pertaining to unit delay realizations this  

is fairly easy .  But when one considers flip-flop realizations the 
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situation is more complicated. This is the reason for much of the com- 

plexity in some of our proofs relating to reduced dependence. With this  

in mind we state the following Theorem. 

Result 2 (Theorem). 

Let M be a machine coded by h into { 0,1] n. Let A and A '  be 

subsets  of { l ,  . . . , n].  If T = n p i  and p = n p i ,  then ~ " p " p  iff for 

every g C A '  there exists Y such that Y (y,x) = F (y ,x) for every input 
g g 9 A  
n x and for every y c { O ,  11 . 

Proof. 

A A' 

n For every y e{O,  13 such that y = h(a) for some a e [  s] and such 

that 6(a ,x)  is specified let Y (y,x) = h [6(a,x)] for every gel\' . Suppose 

~ " p " p .  Show that if we define F (h (a),x) = h [6(a,x)] then F is well 
g A  g g 

defined on {h (a) (as  { s] 1. If there exists a ,  be{ s] such that h (a) = 

h (b) and 6(a,x) and 6(b,x) are specified, then ~ [ a ]  = ~ [ b ] .  

this  impl ies  p[6(a,x)] = pb(b,x)] .  Therefore p [6(a,x)] = p [s(b,x)I 

because p 2 p .  Thus h [6(a,x)] = h b ( b , x ) ]  and F is well defined on 

the set of all {h (a) I a€  { s]  3 . Extend F to all of { 0, l ]  in any manner. 

Recall that  F (y , x) is arbitrary i f  there is no a s  [ s} and x e [XI with 

6 (a, x) specified and y = hA(a). For every y { 0,1] 

g 9 

A A 
Since ~ " p " p  A 

g 9 

g g g g 
A 

A 9 

g A  
n let Y (y, x) = 

11 g 

Consider the converse. Le t  a ,  be { s]  and x c {x] such that 6 (a,  x) 

and 6 (b, x) are specified and T [a] = T [bl . T [a] = T [b] implies that  



8 

hA(a) = hA(b). Therefore Y (h(a),x) = h (S(a,x)) = F (h ( a ) ,x )  = 

F (h (b),x) = h [6(b,x)l for every geA . This in  turn implies that 

p [6(a,x)l = p [6(b,x)l for every g e A .  Hence p[6(a,x)l = p [ ~ ( b , x ) ] .  11 
This concludes the preliminaries. We will now consider 

g g g A  

g A  g 

g 9 

sequential machines that are realized with flip-flop memory elements. 
I 

In the next chapter we consider first machines that are realized with 

trigger flip-flop memory elements and later consider machines that are  

realized with set-reset flip-flop memory  elements. 



Boolean, 

Inputs 

0 1 

CHAPTER I1 

Realizations with Flip-Flop Memory Elements 

Trigger Flip-Flop Realizations 

The following example demonstrates the difference between 

trigger flip-flop realizations and unit delay realizations. Machine A 

in Figure 3 has  partition pairs (1 ,2 ;3 ,4 ) "~" (1 ,3 ;2 ,4 )  and (1,3;2,4)"p" 
-- -- -- 

-- -- -- -- 
(1,2;3,4) where (1,2;3,4) (1,3;2,4) = 8. If we let p1 be (1,3;2,4) 

and associate  h with p and if we let p be (1,2;3,4) and assoc ia te  

h with p 

Y2(y1,y2,x) = F2(y1,x) wherey  

-- 
1 1 2 

then from Resul t  2 it follows that Y1 (yl ,  y2, x) = F (y , x) and 2 2 1 2  

y e [ O , l ]  amdxs [x ] .  In particular 1' 2 
- 

+ x i  andY2 - - xyl + x. But when we compute the trigger 

functions we get T (y , y  , X I =  xy y + xy y + xy y + xy y and 

T2(y1, y2 ,  x) = xy y + y + xy where the operations e and + are 

2 Y1 = x y 2  
-- - -  - -  

1 1 2  1 2  1 2  1 2  1 2  
-- 

1 2  1 2  2 

3 
States 

-- -- 
( 1 , 2 ;  3 ,4)  I' p" ( 1 ,3; 2,4) 

(1,3;2,4)"p1'(l ,2;3,4) 
-- -- 

6 

Figure 3 ,  Machine A 

9 
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We see from th is  example that the functional dependence is not 

in general the same for trigger flip-flop realizations as it is for delay 

realizations.  Hence partition pairs do not characterize trigger flip-flop 

realizations. The next definition gives  a relation which does characterize 

trigger flip-flop realizations.  

Definition 7 .  Le t  M = ( {  s],{x],{ O}, 6 ,  h )  be a sequential machine. 

The s ta te  partitions T and p are in  relation ~ ' ' t ' l p  iff 

1. p is a two block partition 

3. For every two s ta tes  a ,  b such that T [a] = ~ [ b l  and p[al f 

p [b] and for every input x, then p [6 (a, x)] # p [6 (b, x)] when 

s(a,x) and tj(b,x) a re  specified. 

N o t e  that  3 merely says  that the next states are in  different 

blocks of p .  For a n  example of th i s  definition consider Machine B in 
- 

Figure 4 .  In th i s  machine (1,2;3,4,5)" t"(1,2,3,53).  Note that 

(1 ,2 ,3 ,5;4)  is a two block partition and that (1,2;3,5;4)"~"(1,2,3,5;7) 
--- - 

x ~ ( 3 , x )  and tj(4,x) as well as 6(5,x)  and 6(4,x) are in  opposite blocks 

of (1 ,2 ,3 ,5 ;4) .  
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0 

3 

5 

2 

4 

1 

I 

1 

3 

1 

4 

2 

4 

11 

Inputs 

I 

1 

States 2 

3 

4 

5 

-- 
(1 , 2 ;3,4,5) "t" (1,2, 3 ,5 ;4 )  

Figure 4 .  Machine B 

It should be observed that if p 2 T then ~ " p " p  and ~ I ' t l ' p  a re  

equivalent when p is a two block partition. Also if  p is a two block 

partition and T = p then ~ " t l ' p  implies p"p"p which implies that  p has  

the substitution property. 

Before we proceed to the principal resul ts  we need the following 

l e m m a .  

Result 3 (Lemma).  

th L e t  machine M be realized with the g memory element a 

trigger flip-flop and let I\ be a subset of { 1, . . . , n] which does not 

contain g.  A ~ S O  suppose Y (y, x) = y M ( Y ~ ,  X) + + N(Y/\, X) for every 

input x and for every n tuple y in {O, 13 , Then T (y,x) = G (y ,x )  

iff M = N. 

Proof. 

9 9 g 
n 

g g h  
- 

+ ygYg(y, x) . Substituting the equation given for Y and simplifying gives 
g 



i 

, 

1 2  

T (y, x) = y Fi(yA, x) + Y N'YI\, X) . 
there exists y and x such that M(y , x) # s ( y A ,  x) . Consider the n 

We c l a i m  M = E. Suppose 
g g g 

A A 

tuple y' where y '  = y.  for every i in A ,  y'  = 0 while the remaining y 
i i  g i 

are arbitrary. Note  that g is not in A .  Consider the n tuple y # where 

yy= yi for every i in A ,  y# = 1 while the remaining y .  # are  arbitrary. 
g 1 

# Then T 

T (Y' I X) = Tg(y 

diction. 

N(yAtx) and T (y ,x) = E ( y  ,x) ,  But from the hypothesis g 9 A 
# x) . Therefore N(y , x) = M(yA, x) which is a contra- 9 A 

ii) Suppose M = E. A s  before T (y,x) = Y f i (yA,x)  + Y N(yA,x) . 
g g g - 

Since M = N this  impl ies  that T (y ,x)  = N(yA, x) for every n tuple y in 

{ O ,  1In and for every input x. 11 
g 

Now we give the theorems for reduced dependence for trigger 

flip-flop input functions. The next two theorems give necessary and 

sufficient conditions that the input function to a trigger flip-flop be  a 

function of a subset of the state variables. 

Result 4 (Theorem). 

If a sequential machine M coded into [ 0,  l I n  by h has  a reali- 

zation with the gth memory element a trigger flip-flop such that T (y,x) = 

G (y ,x) where y is any element of { 0,1]  , x is a n  input, and A is a 

subset of { l ,  . . . , n ]  then the state partitions p and T are  such that 

T I ' t l ' p  where p = p 

9- 
n 

g A  

and T = n pi .  
9 A 



1 3  

Proof. 

i) Suppose gel\. Then T < p and since for a trigger flip-flop - 
- 

we get  that  Y (y, x) = G (y I x) ? Y (y ,x)  = T (y,x) V g +  Tg(y,x) yg 

+ G (y ,x) y from the hypothesis. Therefore Y (y,x) = F ( Y  

since gcA. Thus from Result 2 we get that T "p'lp. Since p > T this  

g g g Y A  g 

g A  g g g A  

- 
means T I l t " p  . 

, 
ii) Suppose g f h .  From the hypothesis and Result 3 yg(y,x) 

n 
= y M(yA,x) + N(yA,x) for every y e f  O , 1 ]  

and a l s o  M = E. From Result 2 th i s  implies that  7 .p''p"p since 

and for every input x 
g g 

L e t  a ,  b be  s ta tes  such that ~ [ a l  = ~ [ b l  and p[a] # p[bl and let 

x be  a n  input. Show p[6(a,x)l # p[~(b ,x ) l  if s(a,x) and 6(b,x) are 

specified. ~ [ a l  = ~ [ b l  implies that  hA(a) = h (b) from the hypothesis 

and the definition of p . Also p[al # p[b] implies that h (a) # h (b) from 

the definition of p = p . But Y (h(a),x) = h (a) M(h, (a),x) + 6 (a) 

N(hA (a) I x) and Y (h(b) I x) = h (b) M(hA(b), x) + 6 (b) N(hA(b), x) . Since 

h (a) # h (b) assume with no loss of generality that h (a) = 1 and 
9 g g 

h (b) = 0. Then Y (h(a),x) = M(hA(a),x) and Y (h(b),x) = N(h ( b ) , ~ ) .  g g g A 

Since h.(a) = h.(b) for every i g A  and M = N th is  implies that  Y (h(a) ,x)  
1 1 g 

# Y (h(b) I x) which implies tha t  h [6 (a ,  x)] # h [6 (b, x)] from the 

definition of p . 11 

A 

g g 

9 g g I1 9 

g 9 

- 

g 9 g 

g 
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A corollary to this  theorem relates  delay realizations to trigger 

flip-flop realizations. 

Result 5 (Corollary). 

L e t  M be a machine coded by h into { 0,1} and let A ,  A '  be 

subsets  of { 1, . . . , n] with A '  5 A .  If machine M is realized with trigger 

flip-flop memory elements such that Ti(y, x) = Gi(yA I X) for every i in A' 

then the partitions T = lI p i  and p = II p ,  are  such that ~ " p ' l p .  
A A '  

Proof. 

From Result4 ~ " t ' l p  forevery i inA. Since id' implies ieA i 

we have that T 5 p Therefore ~ " t ' l p ,  implies ~ ' ' p " p .  for every i in A '  . 
i ' 1 I 

Thus ~ " p "  II p .  since the multiplication of partition pairs is a partition 

pair from Result 1. Thus ~ " p " p .  

A' 

We now give the necessary conditions for reduced dependence 

for trigger flip-flop realizations. 

Result 6 (Theorem). 

If machine M is coded by h into { O ,  l I n  such that ~ " t " p  where 

p = p with g s { l , .  . . , n ]  and T = II p with A e { l , .  . . , n ]  then T (y,x) 
g A i  

= G (y , x) for every y in { O ,  l ]  

Proof. 

9 - 
n and for every input x. 

g A  

Since ~ " t l ' p  we know that T - p " p " p .  From Result 2 this  implies 

and for every input x. n 
that Y (y, x) = F (y , y , x) for every y in { 0,1} 

g 9 A  g 
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There a re  two cases to consider, 

t 

i 

i) Suppose geA. Then Y (y,x) = F (y ,x) .  Recall that 
g g A  

T (Y,x) = Y Y (Y,x) + 3 Y (Y,x) = Y F (Y ,XI  + 5 F (Y , X I .  If we 
g g g  g g  s s A  g g A  

let G (y ,x) = y F (y  ,x) + F (y ,x ) ,  then we get the result. 
g g A  g g A  

ii) Suppose g $A. Recall that we have certain freedoms on F . 
g 

Namely for every a c {  s] and input x such that 6(a,x) is specified 

F (h (a) ,  h (a),x) = h [S(a,x)]. Otherwise we may specify F (y , y  ,x) 

in any manner. We specify F on all the (y , y ) such that (y , y ) # 

(hA (a), h (a)) for any  a c { s]  with 6 (a, x) specified a s  follows. If yA = h i a )  

for some a C { S }  but y # h (a), then define F (y , y  ,x) = f (h (a), 

hg(a) , x) . For the (y , y ) that remain we define F with the constraint 
A g  g 

that F (y , y  ,x) = F (y ,? ,x) which can  clearly be done, Show 

Fg(yAtyg,x) = T (y , y  ,x) for all the (y , y ,x ) .  The only c a s e  that 

g A  g g g A  g 

g A g  A g  

g 

g c J  g h  g 912  

g A  g g A  g 

S A  g A 

must be considered is when there exists a , b  c [ s ]  and x such that 

h.(a) = h.(b) for every i in A and h (a) # h (b) while 6(a,x) and 6(b,x) 

are  specified. But h.(a) = h.(b) for every i in  A implies ~ [ a l  = ~ [ b ]  

and h (a) # h (b) implies p[al # p[bl. From the definition of ~ ' ' t l ' p  th is  

implies that  p[~(a,x)] # p[~(b,x)I  or h [6(a,x)l # h [6(b,x)] which is 

equivalent to Y (h(a),  x) # Y (h(b), x) . Therefore F (h  (a),  h (a) ,  x) 

# F  (h (b ) ,h  (b) ,x) .  Thus F (y  , y  ,XI  # F  (y , y  ,x) f o r a l l  ( Y  , y  A). 

1 1 g g 

1 1 

g g 

g g 

g g g n  g 
- 

g A  g S A  g g A  4 A g  

Since Y (y,x) = F (y , y  , x )  we deduce that Y (y,x) = y M(y ,x )  

Show M = N .  Consider a particular (y  ,x ) ,  
g g g g A  

- 
+ 3 N(yA,x).  CJ A 



terms they must be filled in properly. Recall that these terms ar ise  

from a n  incompletely specified machine or they a r i se  when all the n 

tuples of { O ,  13 n do not represent a state as  happens in 5 state 

machine s . 

Result 7 (Corollary). 

I 

Let  machine M have state partitions T and p such that ~ " p " p  

and p 27 .  If M is coded by h into [ O , l j n  such that T = II p .  where 
A 1  

A < { 1, . . . , n] and p 5 p where g e  { 1, . . . , n] then T (y, x) = G (y , x) 

for every y in {O, l ]  

Proof. 

9 g g . A  - 
n and for every input x. 

If > p then ~ " p " p  implies ~ " p l ' p  from Result 1. p g i  p 2 T %- 9 

means that ~ " p " p  is equivalent to 7 " t " p  . Therefore from Result 6 

T (Y,x) = G (Y ,x) .  11 
g g 

g g A  

For a n  example of Result 7 consider machine C in Figure 5.  If 

1' we code machine C with h such that h is constant on the blocks of p 

h is constant on the blocks of p 

then from Result 6 

1 

and h is constant on the blocks of 

,x) = G (y ,x) since p " t " p l .  For T1(yl, y 2 ,  y3 

2 2 3 

1 2  2 p31 
- 

one possible assignment T (y , y  , y  ,x) = y2x. 1 1  2 3 
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5 4 

~ 3 5 

Inputs 

1 

States 2 

3 

4 

5 

Figure 5.  Machine C 

It is obvious that the relation "t" does not have all the algebraic 

properties of the relation Ilp" since for all partitions such that T " t " p  we 

l i m i t  p to  a two block partition. Therefore we cannot expect statements 

l i k e  the multiplication of t-pairs is again a t-pair. Nevertheless the 

relation " t"  does have some properties which we now investigate. 

Result 8 .  

If ~ " t ' l p  and y < T then y"t"p. 

Proof. 

i) Show y.p"pl'p. Y ~ T  implies y e p  - < T o p  hencefrom Result 1 

and the fact that T p " p " p  we deduce that y p"p'*p. 

ii) L e t  a ,  b € 1  s] such that y[al = y[b] and p[a] # p[b]. Then 

since T - > y we have that ~ [ a l  = ~ [ b ] .  Because ~ ' ' t l ' p  this  implies that 

p 16 (a, x)] # p [6 (b, x)] if 6 (a, x), 6 (b, x) are  specified. 11 



18 

Result 9 .  

If 7Ilt"p and y"t"p then T - y " t " p .  

Proof. 

T -y - c T- implies T -y"t"p from Result 8. 

Result 10 .  

L e t  M be completely specified. If ~ ' ' t ' ' p  and y"t"p then 

( 7  + y)''t"p . 
Proof. 

i) First consider a sequence of states a , . . . , a ,  such that for 
1 1 

every i in [ l ,  . . . , j - l ]  

by induction that i f  

if 

= ~ [ a ~ + ~ l  or y[a; = ~ [ a ~ + ~ l .  

1 I 

We show 

while p[al] = p[a.] then p[S(al,x)l = p[6(a.,x)] 

p[all # pra.1 that p[6(al,x)1 # p[s(aj,x)l. 
I 

Suppose j = 2 .  Then 7[a11 = ~ [ a , ]  or $a,] = y[a 1. If 2 

p[al] = p[a2] th i s  implies p[S(al,x)l = p[6(a2,x)1 since ~ - p ' ' p ' ' p  

and y*p"pllp. If p[al] # p[a2] then we deduce that p[6(a1,x)1 

# p[6(a2,x)1 since T " t " p  and y"t"p.  

Assume the hypothesis is true for every integer j in [ 1, . , . , k] 
with k > 2 .  L e t  a l , .  . . , akr  ak+l be a sequence of states such that - 

= ~ [ a ~ + ~ l  or y[ai] = Y[ai+l 1 for all i in  { l , .  . . , k ] .  

Suppose p[al] = If p[a,l = p[ak+l] then p[all 

= p[aJ 

= p[6(ak,x)1 = p[6(akcltx)1. If 

which from the inductive hypothesis implies p [ 6  (al, x)] 

p h , ]  # p[ak+llt then p[all # p[akl 
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which implies 

from the induction hypothesis. But since p is a two block partition th i s  

p[6(ak,x)1 # ~ [ 6 ( a ~ + ~ , x ) l  and p[6(al,x)1 # p[6(ak,x)1 

Suppose 

# p[akl which 

# p[6(ak,x)1 = p 

from the inductive hypothesis implies p [s(al ,  x)] 

then p[al] = p[akl which implies p[6(al,x)1 = p[6(ak,x)1 # I XI1 

or p (s (a x)l # p [s (ak+ x)l . 
ii) Show ( T  + y)"t"p. L e t  a , b  be states such that ( T  + y)[a] 

= ( T + y)[bl then there exists a sequence of states a , . . . , a .  such that 

a = a , a  = b and = ~ [ a ~ + ~ l  or y[ai] = y 

{ l , .  . ., j-11. If p[a] = p[bl then from i) pb(a,x)I = p[6(b,x)]. There- 

fore P . ( T  + y)I'p"p. If p[al # p[b] then from i) p[6(a,x)l # p[6(b,x)]. 

Therefore ( 7  + y)"t"p. 11 

1 I 

for every i in 
1 j 

Fcr a given 2 block partition p on a completely specified machine 

Result 1 0  implies the existence of a largest  partition T such that ~ " t l ' p .  

We conclude this  section with the following theorem, It gives the 

conditions which allow one to  realize a machine with trigger flip-flops and 

get  reduced dependence for more than one flip-flop. 
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Result 11 (Theorem). 

Consider a machine M such that 

i) There exists the following partitions in the t-relation 

ii) For every g in { 1,.  . . , n ]  there is a subset A of { 1, , . . , n] 

such that 

g 

iii) F o r e v e r y g i n C l ,  ..., n] M i s c o d e d b y h i n t o  { O , l ] n s u c h  

that h is constant on p . In other words p is the partition associated 

with h . 
g g 9 

g 

Then for every g in { 1, . . . , n] Tg(y, x) = G (y , X) . 9 A  

Proof. 

It follows from i), ii) and Result 8 that for every g in { 1 ,  . . . , n] 

( II p j ) " t " p g .  From iii) and Result 6 this  implies that  

for every y in { 0,1] 

T (y,x) = G (y ,x) 
g g A  % 

n and for every input x. 11 

An example of Result 11 is given by machine C in Figure 6 .  If we 

3 code machines C by h into { 0,1] 

associated with h then since 

such that p 1, p 2  , p 3  are  the partitions 



2 1  

I 
I 

' j  

we deduce from Result 1 2  that T (y  , y  l y  ,x) = G (y x), T (y  , y  , y  ,x) 1 1 2 3  1 2 '  2 1 2 3  

Inputs 

0 1 

1 

2 

States 3 

4 

5 

Figure 6.  Machine C 

Set-Reset Flip-Flop Realizations 

In this  section we consider sequential machines realized using 

set-reset  flip-flops a s  memory elements. The organization and resul ts  

of the section a re  similar to those of the previous section. A s  in the 

case for machines realized with trigger flip-flop memory elements parti- 

tion pairs do not characterize machines realized with set-reset  flip-flop 

memory elements. Definition 8 gives a relation which does characterize 

set-reset flip-flop realizations. 

Definition 8.  Let M = ( {  s) , [x )  I { 0],6 , X )  be a sequential 

machine. The state partitions T and p are  in relation T " I - " ~  i f f  
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1. p is a two block partition 

3. For every two states a and b such that ~ [ a ]  = ~ [ b l ,  p[a] 

# p [b] and for every input x such that 6 (a, x) and 6 (b, x) are  specified 

then either pb(a ,x) ]  = pb(b,x) l  or 6(a,x) e p[al and s (b ,x)  e p[bl. 

For a n  example of the  preceding definition consider Machine 
-- 

D in Figure 7 .  In th i s  machine ( 1 , 2 , 3 , 4 5 ) 1 1 r ' ' ( 1 , 2 ; 3 , 4 , 5 ) .  Note 
- --- 

p = (1 ,2;3,4,5)  is a two block partition and that ~ * p " p " p  = (1,2;3,4;5) 
-- 

"p"(1,2;3,4,5) .  Also note for example that p[6(1,0)] = p[6(3,0)'1 and 
- 

that  s ( 1 , l )  = 2 is in p [ l ]  = 1 , 2  and 6(3,1) = 4 is in  p[31 = 3 ,4 ,5 .  

1 

2 

States  3 

4 

5 

Inputs 

0 1 

Figure 7 ,  

- 
"r" p = (1 ,2,3,4;7)"r1 ' (1 ,2;3,4,5)  

Machine D 

It should be observed from the definition that i f  p 2 T and if p 

is a two block partition then ~ " r ' l p  and ~ " p " p  are equivalent. If we 

realize a sequential machine coded into [0 ,  1 j n  by h such that the g 
th 

memory element is a set-reset flip-flop where go [ 1 , . , . I n] then 
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S (y,x)  = m s  (Yg(y,x),y 

{ 0,  l ]  

and R (y,x) = (9 (Y ( Y , x ) , Y  for a l l  Y in 
g g g r g  9 

n and for every input x. ;P and 4 are  incomplete functions in 
S r 

that they are  not specified for all evaluations of Y and y . Given a 
g g 

n max { 0 ,  13 then we define F Boolean function F: { O ,  13 

specified and Fmax(y)=l if F(y) eis,notspecified. We define F 

if F(y) is specified and F 

F is extended to all of {0 ,  1ln then F 

means that i f  F 

(y) = .F(y) if F(y) is 

m in 
(y)-= F(y) 

min 
(y)=O otherwise. It should be noted that if 

where F - > F max m in m in 
2 F z  F 

m in (y)=l then F(y)=l. We are now ready for two l e m m a s .  

Result 1 2  (Lemma). 

L e t  M be a sequential machine coded by h into { O ,  1In .  L e t  g 

be in  { l ,  * .  . , n ]  and let A < {l ,  . . . , n ]  with g f A .  If Y (y,x) = y U(yA,x) 

n + Y W(y,,x) for every y in [ O ,  13 and for every input x where W - e U 

th then M can  be  realized with the g 

9 g - 

g 

memory element a n  r-s flip-flop 

such that R (y ,x)  = I (y ,x) while S (y,x) = H (y ,x) for every y in 

{ 0, 1 3 
Proof. 

g g A  g g A  

and for every input x. 

n function such that V - < U for every y in { O ,  13 

Since W 

and for every input x. 

U we can  let V = W. If this  is done then S (y, x) = W(yA, x) . 
g 
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I i, 

- - yg E(Y,,X). Thus in general R (y ,x)  = yg 6 (yA,x )  + yg G(yA,x)  
g 

where E can  be any function such that a - < w. But W - < U implies that  

w > 'is. Thus we can  let E = E. If this  is done then R (y, x) = U(y , x) . 11 g A - 

The next Lemma is the converse of the previous one. 

Result 13 (Lemma).  

th If M is coded by h into [O, l J n  and realized such that the g 

memory element is a set-reset flip-flop with S (y,x)  = H (y ,x) and 

R (y, x) = I (y , x) for every y in [ 0, 13 

is a subset of { 1, . . . , n] such that gfA . Then Y (y, x) = y U(yA, x) + f g  

W(y , x) where U 2 W. 

Proof. 

g g A  
n and for every input x where A 

g g A  

g g 

A 



With the aid of the pre7 ious l e m m a s  

2 5  

3 c a n  now state and prove 

the theorems which give the necessary and sufficient conditions for a 

machine realized with set-reset flip-flops to  have reduced dependence. 

Result 14  (Theorem). 

L e t  M be  a machine coded by h into { O ,  l J n  and realized such 

th  
that the g 

In addition for every y in  { 0 , l J  

memory element is a set-reset flip-flop where ge { 1, . . . , n] e 

g A  

Then the 

n and for every input x Sg(y, x) = H (y , x) 

while Rg(y,x) = I ,x )  where A is a subset  of { 1, . . . , n] . 
partitions p = p and T = Il p .  are  in relation ~ " r l ' p .  

g A 1  
Proof. 

i) Suppose gcA . A s  in Result 13  Y (y,  x) y U(y, x) + Yg W(y, x) 
g g - -  

while S (y,x)  = y V(y,x) + ? W(y,x) and Rg(y,x) = yg F(Y,X) + yg M(Y,x) .  

Therefore multiplying S by  ? gives 7 S (y,x)  = y W(y,x) and multi- 
g 9. g 9  g 

plying E by y gives  y R (y,x) = y U(y,x).  Therefore Y (y ,x)  

= y  k ( y , x ) + y  S (y,x) .  Which implies that  Y (y ,x)  = y 7 (y ,x) 
g s l  g 9 .  9 g g A  

+E; H (y  ,x) fromthe hypothesis. Therefore Y (y ,x)  = F (y ,x) 
g g A  9 g A  

gcA which from Result 2 implies 

g g g 

g g g g  g g 

since 

T -p"p"p. Since geA th is  implies p >  T - 
thus ~ " p ' I p  and s ince p is a 2 block partition ~ " r l ' p .  

ii) Suppose g#A. Then from Result 13 Y (y ,x)  = y U(y ,x) 
9 9 A  

+ 

be in { s ]  and x be a n  input such that  6(a,x) and s (b ,x )  are specified.  

W(yA,x) with U - > W. Thus from Result 2 again ~ - p ' I p l ' p .  L e t  a , b  
g 

c 
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2 6  

I 

I 

t 

t 

Also let 

we have that 

that  h (a) # h (b). 

T [a] = T [b] and p [a] # p [b] . Since 

p [a] # p [b] and p = 

T [a] = T [b] and T = 
A P i  

we have h (a) = hA(b). Since A 

9 9 

Suppose s(a,x) e p[b]. This means that Y (h(a) ,x)  = h (b) 

h ( 6 h x ) )  = Yg(h(a),x). Show Yg(h(a),x) = h (b). Suppose 
g g 

since 

h (b) = 0 and h (a) = 1. Then s ince 

+ 6 (a) W(hA(a),x) we have tha t  

Since U - > W this  implies 

th i s  case 

Suppose h (b) = 1 which implies 

= 1. Since U - > W, th is  implies that  

Y (h(b),x) = U(hA(b),x) = 1 in th i s  case. Thus Y (h(b),x) = h (b). Since 

Y (h(b),x) = h (b) we have that p [6(b,x)] = p [b]. Thus 6 ( a ,x )  G p[b] 

implies s(b,x)  G p[bl. Similarly s(b,x)  E p[a] implies 6(a,x) e p[a]. 

Therefore T llrl'p . 11 

9 g 

Y (h(a) ,x)  = h (a) U(hA(a),x) g g g g 

g g A 
Y (h(a),x) = U(h (a) ,x)  which is 0. 

W(hA(a),x) = W(hA(b),x) = 0.  And since in  

Y (h(b),x) = W(hA(b),x) = 0 we have 

g g 

Y (h(b),x) = h (b).  g g g 

hg(a) = 0. Then Y (h(a),x) = W(hA(a),x) 

U(h,,(a),x) = U(hA(b),x) = 1. 

g g 9 

9 9 g g 

The previous theorem h a s  a corollary which tells when partition 

pairs re la te  to reduced dependence for set-reset realizations.  

Result 15 (Corollary), 

n If a sequential machine coded by h into { 0,1] has  a realization 

with set-reset flip-flops such that  R (y ,x)  = I (y ,XI and S (y,x) 

= H  (y  ,x) f o r a l l g i n A '  whereA' a n d i l a r e  subse t so f  [ l , . . . , n ]  
g A  

g s A  g 
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such that A'  < A ,  then the partitions 

that ~ " p " p .  

Proof. 

T = II p .  and p = 111 p ,  are  such 
A 1  A 1  

- 

From Result 14 ~ " r ' l p  for every g in A '  . Since gaA we have 
g 

that  

T"P"II~ p g  since the multiplication of partition pairs is a partition pair. 
A 

Therefore 

p > T and therefore ~ ' ' p ' ' p ~ .  From Result 1 this  implies 
g -  

T I' p" p . 11 

It should be  noted that i f  A '  = A in Result 15 that T has  S.P.  

N e x t  we state the sufficiency theorem for reduced dependence. 

Result 1 6  (Theorem). 

n Le t  a sequential machine coded by h into [ 0,1]  have state 

partitions T and p such that ~ " r l ' p .  If in addition 

where ge[1, ... , n ]  a n d A 5  { l ,  ... , n ]  then R (y,x) = I (y ,x) and 

S (y,x) = H ( y  ,x) 

Proof. 

T = n p .  and p = p A 1  9 

9 g n  

and for every input x. 
n for every y in  [ O ,  13 

9 9 A  

i) Suppose gaA.  Then p 2 T and since T"rl'p implies T . p " p " p  

Yg(y, x) = F (y , x) or Yg(y, x) we get ~ " p " p  s ince T p = T .  Therefore 

= y M(yr  ,x) + yg N ( y r  ,x) where I' = A - [g] . A s  in the proof of 

Result 1 2  

g A  

9 

R (y,x) = yg v(y ,x) + y G(yr ,x) and S (y,x) = y 
9 9 9 g 

V(Yr I x) + Y g  W(Yr I XI. 

t 
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I 

I 

I 

ii) Suppose g$A. T "rl'p implies T p "p"p. Therefore 

= F (y , y , x) from Result 2 .  Again we have certain freedoms on F . 
Namely for every a e { s ]  such that 6(a,x) is specified 

= h 16 (a, x)] . Otherwise we may specify F in any manner. We specify 
El g 

F on the (y , y  ) such that (y , y  ) # (h (a), h (a)) for any  a ~ { s ]  with 

s(a,x) specified as  follows, If yA(a) = h (a) for some a G { s ]  but 
A 

y # h (a), then define F (y , y  ,x) = F (h (a), h (a ) ,x) .  For the 

(yA,yg) that remain we define F with the constraint that  F (y , y  ,x) 
g S A  g 

= F (y ,? ,x) which can  clearly be  done. 

Yg(y , x) 

g A  9 g 

Fg(hA(a),hg(a),x) 

g A g  A g  A g 

g g  g A  g g A  g 

g A  9 

Since Y (y,x) = F (y , y  , X I ,  it is clear that Y (y,x) = y g g A  g g g 

e { O , l }  . Clearlythere  

but y # yb. Suppose with 

A U ( y A , x ) + y  W(yA,x). S h o w U Z W .  L e t v  

n 
exists y ,y '  e { 0 , 1 ]  suchtha tv  =y =f 

9 A 

A A A  g 

' = 0. Then Y (y,x) = F (y , y  ,x )  
g g A  g 

no loss of generality that y = 1, Yg 
9 

= U(yA,x) and Y (y ' ,x) = F (y' , y  ,x) = W(yi ,x) .  If either of y or y '  

is in { O ,  1ln- h({s]) then F (yl ,yb ,x)  = F(yp,,ygx) from the way we 

n specified F . Note that y e { O ,  13 

a ~ { s ] .  F (y' , y '  ,x )  = F (y , y  ,x) 

and therefore U( v , x) = W( vA, x) . Suppose both of y, y '  a re  in h( { s]) , 

Then y = h(a), y '  = h(b) . Again suppose y' = 0 and y = 1. If 

W(vA,x) = 1 then W(yi ,x)  = 1 which implies that  
g g h  g 

= 1. This means that Y (h(b),x) = h (6(b,x)) = 1. Hence s(b,x)  E p [a] 

g S A  g 

cl '1 

- h({s]) means y # h(a) for every 
g 

implies that  U(y ,x) = W(y;2,x) g A  g g A  g A 

A 

g 

Y (y' ,x) = F (y'  , y  ,x) 

9- g g 
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s ince h (a) = y = 1. From th  hypothesis h (a) = h (b) implies that  

1-[a1 = p[bl and h (a) # h (b) implies that  p[a] # p[b]. Since ~ ' ' r ' l p  
g g 

and &(b ,x )  e p [a], it mus t  be true that  &(a,x)  B p [a]. This means 
g g 

that Y (h(a) ,x)  = h [6(a,x)l = h (a) = 1. Thus 1 = Y ( y , ~ )  = U(yA,x) 

= U(V,,x). Thus we have shown that  U - > W. From Result 13 th i s  implies 

the theorem. 11 

g g A A 

g g g g 

Machine D of Figure 7 can  be used to illustrate Result 17.  It 
-- 

h a s  been shown that  (1,2,3,4;5)"r1'(1,2;3,4,5). If machine D is coded 
-- 

such that  p = (1,'2,3,4;?) and = (1 ,2;3,4,5)  then from Result 17  
1 p 2  

2 
e { 0 , 1 ]  and for every input x. For one particular coding R 2 (y 1' y 2 , x) 

We now consider some of the properties of the relation llr". 

Result 1 7 .  

If ~ " r ' l p  and y - < T then y''r"p. 

Proof. 

i) Since yc T ,  we infer that  y e  PSI- *p. From T"rl'p we know that  

T .p"p"p and from Result 1 this implies that  y o  p"p"p. 

ii) L e t  a ,  b B{ s] and x be  an input such that  y[a] = y[b] and 

p[a] # p[b] with s(a,x) and 6(b,x) specified.  Since T 2 y th i s  implies 

~ [ a ] = ~ [ b l .  From ~ " r l ' p  th i s  implies that  i f  6(a,x) B p[b] then & ( b , x )  4 p[b]. 11 
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Result 18.  

If T1"rl'p and T "r"p then T1.T211r1'p,  2 

Proof. 

This result  follows from Result 17 since T ~ * T ~  5 T ~ .  

R 

Result 19.  

1 If T and p are  partitions such that  ~ " p " p  and p > T then ~ " t l l p  - 
and T"r"p 

Proof. 

where p 
1 1 

is any  2 block partition such that p1 2 p .  

Since ~ I l p I ' p  and p1 2 p ,  we know that  ~ " p ' l p ~ ,  Since p > 7 1-  

1' we deduce that  T l ' t l ' p  and ~ " r l ' p  1 

In general T "r'lp and T 'lrl'p does not imply (T + T )"r"p. 
1 2 1 2  

This means that  for a given partition p there does  not necessarily exist 

I a largest partition T such that T"rllp. This is shown by Machine E of 

Figure 8. It is true that  i f  either T < p or T.  < p where 7 "r"p and  
1- 2 -  1 

"rl'p then (T + T )"r"p when the machine is completely specified. 
T 2  1 2  

The next result  i n  th i s  section is concerned with the conditions such 

that  more than one flip-flop can have reduced dependence. 
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1 

2 

States  3 

4 

5 

Inputs 

0 1 

( 1 , 2 , 4 , 5 3 )  l'r'l( 1 , 2 , 3 , 4 5 )  

(1 ,2 ,4;3,5)"r1 ' (1 ,2 ,  3 ,4 ,5)  

( 1 ,2 , 3 , 4  , 5 )  I' not r " ( 1 , 2  , 3 , 4  ;5> 
-- 

Figure 8.  Machine E 

Result 2 0 (Theorem). 

L e t  M be a machine coded by h into {O, l I n  such that 

i) Thzre exists s ta te  partitions i n  the r-relation as  follows: 

where p ,  is the partition associated with T11tr"p1,T211r1'P2,. * . r T  nl l r l l  pn 1 

hi. 

ii) F o r e v e r y i i n  { l ,  ... , n ]  t h e r e e x i s t s 1 2 . c  [ l , . . . , n }  such 
1- 

Then there is a realization with set-reset  flip-flops such that 

Proof a 

From Result 1 7  and i) of the hypothesis p."r"p.  for every 
A i  J 1 

i in { 1, ~ . e ,  n] . The theorem now follows from Result 16. \I 



32 

The converse to Result 2 1 is also obviously true from Result 15 

In the remainder of the section we want t o  prove that partition pairs a re  

sufficient but not necessary for reduced dependence when a machine is 

realized using set-reset  flip-flops. We do this  by defining a relation 

' I , ' '  which is the same as the relation 'lrl' except when T I I T I ' ~  it is not 

required that p be a 2 block partition. 

Definition 9 .  State partitions T and p are  in  relation T ' I F " ~  

i f f  T and p satisfy 2 and 3 of Definition 8. 

Note that i f  ~ I l p l ' p  then ~ " " ' p .  Figure 9 gives  a n  example of 
- --- 

the relation;.  Le t  T = (1,3;2,4,5) and p = (1,2;3,4;5). Since 

T . p  = (1;2;3;4;5) = $ clearly T * p " p " p .  Also 6(1, 0) c p [ l ] ,  6(3, 0) 
----- 

€ pr31, S(2,O) G pr21, S(4,O) € pr41, 6(5,0) c pr51, 6(1,  1) 8 p r 1 1 ,  6(3,1) 

e p [3] while p [S (2, 1)1 = p [S (4, 1)1 = p [6 (5, 1)3. Hence T "F"  p 

1 

2 

States  3 

4 

Inputs 

0 1 

4 

-- --- 
(1, 3;2,4,5) I ' f  " (1,2;3,4;5) 

Figure 9 .  Machine F 
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It is convenient to  have the following properties. 

Result 2 1 .  

If T and p are  such that ~ " F l ' p  and if T < T ,  then ~ ~ " ; " p ,  
1- 

Proof. 

Identical t o  the proof of Result 17. 

Result 2 2 .  

1'  
If ~ I l f l l p  and p 1  2 p ,  then ~ " F l ' p  

Proof. 

i) L e t  a , b  c { s ]  such that ~ [ a ]  = ~ [ b ]  and pl[a] = p [b] and 

let x c {x] such that S(a,x) and 6(b,x) are  specified. If p [a] = p[b] 

then 

= p [6 (b,  x)] since p 2 p . If p [a] f p [b] then either p [ 6  (a, x)] 

= p[S(b,x)] which again implies 

and S(b,x) c p[bl. Since 

and s (b ,x)  c pl[bl. Thus ~ . p " p " p .  

ii) L e t  a ,  b e { S] such that  

1 

p[&(a,x)I = p[S(b,x)I since ~ . p " p l l p .  This implies that  p l [~ (a ,x ) ]  

p1[6(a,x)l = p1[6(b,x)l or & ( a , x )  E p[a] 

p,[al = pl[b] th i s  implies 6(a,x) c p [a] 
1 

T [a] = T [b] and p [a] # p [b] and let 

> p we have x c [x] such that  S (a, x) and 6 (b, x) are specified. Since p 

that  pCa1 # p[b] and therefore either 

that  plr6(a,x)l = pl[6(b,x)l; that  is, 6(a,x) p[a] and s (b ,x)  p[b]. 

Since p > p th i s  implies that &(a ,  x) c pl[a] and &(b ,  x) c p l[b]. 11 

1- 

pCS(a,x)] = p[&(b,x)] which implies 

1- 



Result 2 3 (Theorem). 

If a machine is coded by h into { 0,  l ]  such that T ";"p where 

T = Il p i  and p = n p i  with A '  c { l , .  . . , n ]  and A < { l , .  . . , n ]  then R (y,x) 

= I (y ,x) and S (y,x)  = H (y ,x) 

is a n  input. 

Proof. 

g 

and x 

- 
A A '  

n 
for every gcA' where y e { O , l ]  

g A  g g A  

L e t  geA'  ~ Then since p > p and ~ " T ' l p  we deduce that ~ ' ' r  ' ' p  
9- g 

from Result 2 2 .  Since p is a 2 block partition th i s  means ~ " r " p  . 
From Result 1 6  this  implies t h e  result .  

g 9 

Result 2 4 (Corollary) . 
If a machine is coded by h into {O, l j n  such that ~ " p ' l p  where 

Proof. 

34 

The next result i s  the principal result  concerning 3. 

T " p" p 

Result 24 says the partition pairs a re  sufficient for reduced de- 

implies T "r " p which from Result 2 3 implies the result .  

pendence when a machine is realized using set-reset flip-flops. The 

following example shows they are not necessary by showing that the 

relation ' 'Ft1 is not necessary,  
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Consider Machine G in  Figure 0 .  If 'Iachine G is coded by 
p- 3 h into { O , l ]  such that  p 1  = (1,3,5;2,4), p 2  = (1,2,3,4;3) and 

-- 
2 
3 

= (1,2;3,4,5) then we know from Result 1 6  that  S , R  , S  and R 
p 3  1 1 2  

Y 1 c { o , q  . 1 1 y 2 1  3 
are  functions of only y and the  input for every (y 2 -- --- 
But the partition ( 1  I 2;3,4 I 5) is not in relation r' with (1,3;2,4;5) which 

equals  p 1  . p 2 .  Thus '',I1 is not necessary for reduced dependence. 

Inputs 

0 1 

1 

2 

States  3 

4 

5 

~ 3 4 

5 

Figure 10.  Machine G 

In th i s  chapter we have shown that  partition pairs are  neither 

necessary nor sufficient for reduced dependence of the input functions 

to trigger flip-flops. I t  has  a l s o  been shown that  partition pairs a r e  

sufficient but not necessary for reduced dependence of the input func- 

t ion to  set-reset  flip-flops. In order to anal ize  a machine completely 

with respect  to trigger or set-reset  type realizations it is necessary to 

consider all two block partitions of {SI . There a re  Z q - l - l  of them for 

a q s ta te  machine. For each of these  partitions p one h a s  a set of 
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partitions y ( p )  where the elements of y ( p )  a re  partitions T such that  

~ " t l l p .  For the r relation there is a set of partitions v ( p ) ,  whose ele- 

ments a re  partitions y such tha t  y'lrl'p. In the general situation th i s  is 

a s  much as one can  say.  If the machine is completely specified, then 

for each  p there is a largest  partition T such tha t  ~ " t l ' p .  Thus in th i s  

case we need only consider each p and the largest  partition T such that  

~ " r l l p .  If one considers partition pairs,  then one can  compute the Mm 

pairs (Reference 1) and the Mm pairs imply all other partition pairs.  

Thus it is clear  that  one cannot store the information regarding the t-pairs 

and r-pairs as compactly as  one can  for the partition pairs. It should 

however be  noted that  the computation of the Mm pairs of Reference 1 is 

a difficult t ask  in general. 



CHAPTER 3 

Feedback 

Introduction 

In previous studies of feedback in sequential machines (Reference 

3) the machine was considered to  be  realized using unit delay memory 

elements. In this  chapter we study feedback in sequential machines 

which are  realized with trigger or set-reset flip-flop memory elements ., 

It is shown that the different memory elements affect the feedback 

characterist ics of a sequential machine. We begin by restating some 

results given in Reference 3 .  

Definition 10. L e t  M = ({  s]  , {x] , { O ] , S ,  A )  be a sequential 

machine. L e t  T and p be state partitions and let f:{s] x {x] 4 D be 

s o m e  function where D is a set. Then ~ ' l p f " p  i f f  for every two states 

a ,  b such that 

ti(b,x) are  specified and f(a,x) = f(bi,x) then p[6(alx)l = p[S(b,x)I. 

T [a] = T [b] and for every input x such that 6 (a I x) and 

The next theorem relates the relation pf to unit delay realizations. 

Result 25 (Theorem). 

n Le t  M be a machine coded by h into { 0 ,  13 ~ Also let 

where A < { l ,  . * . ,  n] and le t  p = p where ge{1, . . . , n] , Then 

T = n p 
h i  

~ " p f l ' p  
9 - 

37 
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Proof. 

I 

i) Suppose ~ " p f l ' p ,  Define F a s  follows. For every (y , d , x )  

d ,x)  = h [6(a,x)l  i f  

g A 

where deD and y .  E { 0 ,  11 for every i in A let F (y  

there ex is t s  a E { S ]  such that &(a ,x)  is specified and (h (a) ,  f (a ,x))  

= (yA, d) . 
s(a,x) and 6(b,x) are  specified, ~ [ a ]  = ~ [ b ]  and f(a,x) = f (b ,x)  then 

1 g A' 9 

A 
Show F is well defined. If there exists a ,  b G {  s ]  such that 

g 

pg[6(a ,  x)] = p [6 (b, x)] which implies 
g g g g 

is well defined. For all (y , d ,  x) such that there is no a C {  s ]  and input 

x such that (h ( a ) ,  f (a ,x) )  = (y , d) then F (y , d, x) can  be specified in 

any manner. 

h [6 (a, x)] = h [6 (b, x)] hence F 

A 

A A g A  

ii) Suppose h [6(a,x)] = F (h (a) ,  f(a,x),x), L e t  a , b  € { s ]  such 
9 g A  

that 6(a,x) and s (b ,x )  are specified, ~ [ a ]  = ~ [ b ]  and f(a,x) = f ( b , x ) ,  

Since ~ [ a ]  = ~ [ b ]  implies h.(a) = h.(b) for every ieA this  implies from the 
1 1 

hypothesis that  h [6(a,x)l = h [6(b,x)] which implies p[6(a,x)] = p [ ~ ( b , x ) I .  11 
g g 

Definition 11. Let  M be  a machine and T a state partition of M 

then m1 ( T )  = II(p.lT"pf"p) and m i+ 1 (7)  = m;f(m;f(T)). 

Pf Pf 

Our m is the same a s  the m operator of Hartmanis and Stearns. 
Pf 

We now give the resul t  of Hartmanis and Stearns on feedback which we 

shall  not prove. We do not use this  result except to relate flip-flop 

realizations to delay realizations. 
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t 

Result 2 6 (Theorem). 

Let M be  a q state sequential machine and let f: { s ]  x [ x] -, D. 

Then M can  be realized using f for feedback iff m 9- 1 (I) = 8. I is the 
Pf 

unit partitions. 

Feedback and Trigger Flip-Flop Realizations 

In order to determine when a function f can  be used as  feedback 

in a machine M realized with trigger flip-flops we define the following 

relation. The definition of what we mean by the expression "using f for 

feedback" will be given later. 

Definition 1 2 .  Le t  T and p be state partitions on machine M and 

f:{s] x {x] -, { 0 ,  13' where 4, is a positive integer. Then T " t f " p  iff 

1. p is a two block partition 

2 .  7 p"pf"p  

3 .  For every 2 states a ,  b and for every input x such that s(a, x) 

and s(b,x)  are  specified, ~ k i ]  = ~ [ b ] ,  p[a] # prb], and f ( a ,x )  = f (b ,x)  

then pb(a,x)l # pCs(b,x)]. 

If we have a machine M and a function f:{s] x {x] + { O ,  13 ' and 
n 

i f  we code M with h into { O ,  13 , then we can define a function f '  on 

{ O ,  1 I n  by f '  (h(a),x) = f(a,x). If h is not onto { 0 ,  l ]  then we extend 

f '  in  any manner to all of { 0,1] . We make no distinction between 

n 

n 
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f and f '  . It might be  noted that we use the set { 0 ,1 ]  rather than D 

for the range of f .  We d o  th i s  because  we are  interested in  a reali- 

zation which c a n  be realized in a practical s ince.  

output of f will be fed into logical ga tes ,  hence it is convenient to con- 

.e 

In other words the 

sider the outputs as  n tuples of { 0 ,  15. It  is necessary to  prove the 

next two resu l t s  before we can characterize feedback in trigger flip- 

f lop realizations.  

Result 2 7  (Lemma).  

L e t  machine be  realized with the gth memory element trigg r 

is the coding function and gc { 1 , . . , n] . n flip-flop where h:{ s ]  -+ { O ,  11 

If 

i) f:{s] x {x] 4 { O , l ] ' a n d h ~ { l , . . . , n ]  withgfA.  

ii) F ( y , ~ )  = ygM(yA, f (y ,x ) ,x )  + GgN(yAt f ( y , x ) , x )  for every 

x c { x ]  and .yg{O, l ]nwhere  M = N .  

Then T (y ,x)  = G ( y  f (y ,x ) ,x ) .  

Proof ~ 

g g A '  

n Since T (y ,x)  = y ? (y ,x)  + Y (y,x)  for every ys{O,1]  and 
g 9 9  9 g  

for every x 8 {x] if we substitute for Y and simplify we get that  

T (y ,  X) = y m(yA,  f(y, x ) ,  x) + YgN(yA, f(y,  x) x) . Since M = 8 th i s  
9 

g g 
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Result 28 (Lemma),  

L e t  machine M be coded by h into [ O ,  l I n .  Let T = n p i  where 
A 

A 

If 7 " t f " p  then 

Proof. 

[ l ,  . . , n ] ,  let p = p where g e [ l , .  . . , n ]  and let f:{s] x [x] { 0 ,  13 t . g 

T (y ,x)  = Gg(yA, f(y,x) ,x) .  
g 

Since ~ " t f l ' p  we know that T p"pf"p and from Result 25 this  

n implies that  Y (y ,x)  = F (y , y  f (y ,x) ,x)  for every y in [ O ,  13 . 
g 9 A g' 

i) Suppose gsA. Then since T (y,x) = y ? (y,x) + 9 Y (y,x) 
g g g  g g  

we deduce that T (y,x) = y F (y , y  f (y ,x) ,x)  + 9 F (y , y  f (y ,x) ,x)  

= G (Y f (y ,x) ,x) .  
g g g A  g' g g A  g'  

9 A' 
ii) Suppose gfA. Then Y (y,x) = yg M(yA, f (y ,x) ,x)  

9 

+ ? N(yA, f (y ,x) ,x)  where M(y ,d ,x )  = F (y , y  = l , d , x )  for every 

Recall that there are  d e { O ,  11 and N(yA,d,x) = F (y , y  = O,d,x). 

certain freedoms on F . Namely F (h (a), h (a ) ,  f (h(a) ,x) ,x)  = h [6(a,x)] 

if s(a,x) is specified. Otherwise F (y , y  , d , x )  where d ~ [ 0 , 1 ] ~  is 

arbitrary. Specify F as  follows. If F (y  , y , d,  x) is not determined 

as  above, let F (y , y  ,d ,x)  = F (y , y  , d , x )  where d B [ O ,  13 , y cCO, l I n  

and x ~ [ x ] .  Show F (y , y  ,d ,x)  # F  (y ,? , d ,x )  for all y ~ [ 0 , 1 ] ~ ,  

x s[x]  and d B C O ,  13 . We must only consider the case where there 

g A g A  9 
L 

g 

g g A  g 9 

g pi g 

g g A  g 
t - 

g g A  g 

g A  g S A  g 
L 

exists a , b  s [ s ] ,  x B[X]  such that hA(a) = hA(b), h (a) # h (b), f(a,x) 

= f(b,x) and 6(a,x) and tj(b,x) a re  specified. In this  c a s e  

g g 



implies that  p[s(a,x)] # p[6(b,x)l and therefore that h [6(a,x)] 

# h b (b ,x ) ] .  Thus F (h (a ) ,h  (a), f (h(a) ,x) ,x)  

# Fg(hA(b) I h (b) I f(h(b) , x) , x) . 
Show M = fi if F is so specified. This is clear since M(y , d, x) 

g 

g g A  9 

9 

g A 

= F (Y , y  = l , d , x )  # F  (y ,y = O,d,x) = N(y , d , x )  for every y with 

G G yi e { O ,  l ]  for every i eA,  x c{x] and d e { O ,  13 . From Result 2 7  this  

implies the theorem. 11 

g A  9 g A  g A A 

Result 2 9  (Theorem). 

n If machine M is coded by h into [ O ,  13 and realized with trigger 

flip-flop memory elements such that T (y, x) = Gg(yA, f(y, x) ,  x) where 

A 5 { l , .  . . , n ]  and g e { l , .  , . , n ]  and f:{s] x {x] + {0 ,  l]', then T I ' t f I ' p  

g 

where T = I'I p ,  and p = 

Proof, 
A 1  

i) Suppose geA. Then ~ " t f " p  is equivalent to ~ " p f ' l p  since 

p 2 T . In general Y (yIx)  = y !f (y,x) + ? T(y,x) thus Yg(y,x) 
g 9 g  g 

f(y,  x) , x) + ? G (y f(y, x) I x) = Fg(yA I f (y  x) I x) . Therefore 
g 9 A' = Y  G ( Y  g g A' 

from Result 2 5 T 'I pf" p , 

ii) Suppose gfA. Then again Y (y,x) = y (y f (y ,x) ,x)  
g 9- g A t  

+ G (y f(y, x), x) = F (y , y I f(y, x), x) and therefore from Result 25  
g 9 A' S A  g 
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7'P''pf"p. Le t  a , b  cis] and x e[x] such that ~ [ a ]  = ~ [ b ] ,  p[a] 

# prbl, f(a,x) = f (b ,x) ,  and 6(a,x) and 6(b,x) are specified. ~ [ a ]  = ~ c b ]  

implies that h.(a) = h.(b) for every ieA and p[a] # p[b] implies that 

h (a) # h (b).  Assume h (a) = 1 which implies h (b) = 0. Then Y (h(a) ,x)  

= G (h (a), f(h(a),x),x) and Y (h(b),x) = G (y 

(hn(a) f(h(a) I X) I x) = (hA(b) I f(h(b) I x), x), this  implies that 

- (h(b),x).  Since 6(a,x) and 6(b,x) are  specified, t h i s  means that 

h b(a,x)l  # h b (b ,x ) ]  which implies that ph (a ,x ) I  # ph(b ,x) ] .  The 

same argument yields the same result  assuming h (a) = 0 which implies 

h (b) = 1. Therefore ~ " t f " p  11 

1 1 

9 g g g g 

f(y,x),x).  But since 
g A  9 9 A ,  

Y (h(a) , x) g 
- 

g 

g 9 

g 

g 

With these  results out of the way we can  consider feedback in 

machines realized with trigger-flip-flop memory elements. First we 

must define this  concept. The bas ic  idea is to l ay  the machine out from 

left to right in such a way that the input function to  the ith flip-flop can 

be  computed from f and the state of that portion of the machine which 

lies to  the left of the ith flip-flop. This is shown in  Figure 11. It 

should be noted in the figure that the set of A - 
r 'r-1 

of those flip-flops i such that i ai!FAr- 1. 

flip-flops cons is t s  
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Definition 13. L e t  M be  a machine and f: [ s]  x {x] { 0 , 1 ]  & , 

Then M can  be realized with trigger flip-flop memory elements using f 

for feedback iff M can  be coded by h into [ 0,  l ]  such that 

1. There exists [ A , ,  . . . , A k ]  a set of positive integers such 

that u < v implies A < PLv. 
U 

2 .  If i d l  then T.(y,x) = G.(f (y ,x) ,x)  for every y s [ O ,  1’) n 
1 1 

and x ~ { x ] .  

3. If ieAr-Ar where 1 < r L k T.(y, x) = Gi(yAr- I f (Y  I x) I x) 
1 - 

4 .  n p i  = 
Ak 

where p ,  is the partition associated with h . 
1 i 

It should be  noticed that our definition of feedback depends on 

the memory element used. In order to  prove the important theorem of 
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this  section we define the following quantity and prove a property 

about it. 

Definition 14 ,  

of M .  Then mtf(I-) 1 = 

Let M be  a machine and T 

(7) = 
i+ 1 
tf  I I C p  11-"tf"p] and m 

be  a state partition 

1 
tf  integer i. If { p  11-lltfllp) = 9 the empty set we define m (I-) = I 

partition e 

the unit 

We frequently designate m1 (7) by mtf(T). It should be  observed tf  

that  I- and m (7) , a r e  not in the relation "tf"  . tf  

Result 30 (Lemma).  

If I- .T and p are  state partitions such that I- c T and ~ " t f I ' p  1 -  
where f:{s] x [x] 4 { O , l ]  8 then I - l " t f l ' p .  

Proof. 

L e t  T ,[a] = I- [b] . Then T [a] = I- [b] since T 2 7 1 .  If p[al = p[bl, 

f(a,x) = f(b,x) and tj(a,x) and s (b ,x)  are  specified then 

= p[s(b,x)] since I-*p"pf"p. If p[al # prb], f(a,x) = f (b ,x)  and s ( a ,x )  

and s (b ,x)  a re  specified then 

p[6(a,x) 

p[fj(a,x)I # p[s(b,x)] since 7"tf 'lp. 11 

Result 31. 

.e L e t  M be a machine and f:{s) x {x] - [ O , l ]  . If I- a n d 7  are  1 

state partitions such that I-1 - < I- then mtf(I- 1) 5 mtf(I-). 

, 
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Proof. 

L e t  p be such that ~I l t f ' lp  then T l l ' t f " p  from Result 30. This 

implies mtf(T 1) 5 m t f ( d .  11 

Result 3 2 .  

.e i+ 1 L e t  M be a machine and f:{s] x {x] + {O, l}  . Then mtf (1)s 
i 
t f  m (T)  for every is{1,2, .  . .]. 

Proof. 

2 1 1 1 
i) Show mtf(I) 5 mtr(I). Clearly mtf(I) 5 I .  Thus m tf [m tf (I)] L mtf(I) 

2 
from Result 31 which implies mtf(I) L mtf(I). 

i+ 1 i i+ 1 
ii) Suppose m t f  (I) 5 mtf(I). Then mtf[mtf (I)] 5 mtf[mif(I)I from 

i+ 2 i+ 1 
tf 
i i+ 1 i+ 2 i 

Result 31 and therefore m (I) 5 m tf (I) .  

It is clear that if mtf(I) = m t f  (I) then mtf (I) = mtf(I) .  Therefore 

s ince I c a n  be  refined at most q-1 t i m e s  if M is a q state machine we 

9 know that  mq-l(I)  tf = m&). 

I t  should be noticed that  m (T) is a fairly difficult quantity to  

calculate .  A t  th i s  point we must consider every two block partition p 

t f  

and see if ~ " t f " p  and multiply these  p together, Later we will give a 

better method. But first  we prove a major result  and then give a n  example 

of some of these  concepts.  

Result 33 (Theorem). 

.e L e t  M be  a machine and f: I SI x [XI + 0 , l l  . M can  be realized 
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with trigger flip-flops using f for feedback iff  m q - l  (I) = ,d where q is 

the number of states of M .  

t f  

Proof. 

Suppose M can be  realized with trigger flip-flops using f for 

feedback. Then M can be coded by h into [ O ,  l I n  such that Definition 

1 3  is satisfied.  Let T = TI p j .  
Ar 

1. From 2 of Definition 13 and Result 29  I"tf"pi when isAr 

1 and p is the partition associated with h . .  This implies that  m (I) 5 II p .  
i 1 tf A i  1 

and mtf(I) 5 T 1. 

2 .  From 3 of Definition 13 and Result 29  n p . " t f " p  for 
3 i 

'r- 1 
every i -e ?- -A  This together with Result 30 implies that  II p , " t f ' l p . ;  - r r-1' 1 1 Ar- 1 

that is, T " t f " p  for every i d  . r-1 . i r 
r- 1 

3. From 1 we know m t f ( I ) s T l .  Assume m t f  ( I ) L T ~ - ~  for 

every r such that 2 - < r < k where k is given by Definition 13. Show 

r - mtf(I) 5 T ~ .  From 2 m (T 

t hes i s  T r-1 - tf  

) 5 TI p i  - T ~ .  From the inductive hypo- 
Ar tf  r-1 

> mr-l(I) and therefore, from Result 31 we deduce that 

r 
or equivalently m (I) 5 7 m t f [ m z l ( l ) ~  - c T r  t f  r' 

4 .  Show mq- l  (I) = fi. From 4 of Definition 13 n p - - T k  = 8. 
'k 

tf  

k k 
Hence mtf(I) T~ = 8. Therefore mtf(I) = f i .  From the comments after 

Result 32 this  implies that  m:il(I) = f i .  

, 

E 
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Suppose mq-'(1) = 8. L e t  k be the  f i rs t  integer such that  t f  
k 
t f  m (I) = 8. Then k - < q - 1 .  

1. L e t  El = [pi(isA 3 be a set of partitions with the properties 1 

that  1 " t f " p  for every isA and II p i  = mtf(I). Such a set exists 
A 1  i 1 

since { p II"tf" p 3 h a s  the properties. However, it should be  noted 

1' that  one may not need to include all of t hese  partitions in  E 

2 e Let E = { p  , I isA 3 be a set of partitions with the  properties 2 1 2  
2 that  E2 > E mtf(1)"tf"pi  for every icA and n p i  = mtf(I). Again 

A, 1' 2 
L 

= { p I mtf( I) I '  tf I t  p ] 
2 
tf  

h a s  the required pro- E2 such a set exists s ince 

perties.  This follows from the fact that  m (I) < mtf(I) . 
3. Le t  E = { p  . I i d  3 be a set of partitions with the properties k i k  

k- 1 k m ( 1 ) " t f " p  for every icA and ll p = mtf(I). i Ak i k that  E > E 

The set 

k k-1' tf 
k- 1 

E = {p \mtf  (1)"tf"p') satisfies these  properties s ince k 
k k- 1 mtf(I) < m tf (I). Again it should be noted that  one may not need to 

k '  include all t hese  partitions i n  E 

4 .  For every i such that icAk, let h.(a) = h.(b) 0 p .[a] = pi[b1; 
1 1 1 

k II p i =  mtf(I) = 8, 
*k 

i .e. let h .  be the function impl i e s  by p i .  Since 
1 

h is 1-1. Note that  the range of h is { O ,  1}'k. Thus if we let n be  the 

number of elements in A n to be consis tent  i n  notation then h: { s]  -, {0, 1') . k 

5 .  From Result 28 since 1 " t f " p  for every isA we know 

T.(y,x)  = G.(f(y,x) ,x)  for every y G { O ,  13 . Also from Result 28 s 

i 1 
n 

1 1 

that 

nce 

I 
r- 1 r- 1 

p i  = mtf (I) and m tf (1)"tf"p n 
A i 

when i s A r  we know that  
l'r- 1 
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T.(y,x) = G (y , f (y ,x ) ,x )  for every ish,. Therefore Definition 13 is 
1 i Ar-1 

satisfied and M can  be realized with trigger flip-flop using f for feedback, 11 

An example of th i s  result  is given in  Figure 1 2  by machine H .  

{SI = { l ,  2 , 3 , 4 , 5 ]  and 6 is given in the figure. Also a function 
-- 

f:{s] x {XI 4 { O , l ]  i s  given in Figure 1 2 .  In machine H II ' t f"( l ,2;3,4,5)  

and m (I) = (1 ,2 ;3 ,4 ,5)  since th i s  is the only partition with th i s  property. 

(1 ,2;3,4,5)"tf"p iff p is one of (1 ,2 ;3 ,4 ,5) , (1 ,4 ;2 ,3 ,5)  or (2 ,4 ;1 ,3 ,5)  

- 
t f  - -- -- -- 

---- ---- 2 
tf and therefore m (I) = (1;2;3, 5 ;4) ,  (1;2;3,5;4)"tf"p for every two block 

3 
t f  partition p and therefore m (I) = Id which implies p c an  be  realized with 

-- 
trigger flip-flops using f for feedback. L e t  p = (1 ,2;3,4,5)  I 
- - 

= (1 ,4 ;2 ,3 ,5)  and p 3  = (1 ,2 ,3 ,4 ;5) .  Then A1 = { l ] ,  A 2  = {1 ,2 )  and p 2  

A 3  = { 1 , 2 , 3 ]  

In th i s  case 

function h corresponding to  p I p 2  and p 

sa t i s f ies  the properties given in  the proof of Result 33,  

E l  = C P , ] I  E2  = C P 1 ' P 2 ]  a n d E  = C P l ' P 2 ' P 3 ] .  A coding 3 

is given in Figure 1 2 .  3 

If a machine can  be realized using f for feedback and f is a con- 

s tant ,  then we say  f can  be realized without feedback. Machine J in  

Figure 13 gives  a machine which can  be realized without feedback using 

trigger flip-flops when f is any constant function. Note that 1"tf"p i f f  
- -- -- -- 

p = (1 ,2 ;3 ,4 ,5)  and (1,2;3,4,5)"tf"p i f f  p = ( l13 ,4 ;2 ,5 ) , (1 ,5 ;2 ,3 ,4 )  or 
---- 

(1 ,2 ;3 ,4 ,5 )  and finally (1;2;3,4;5)"tf"p for every p which is a two block 
---- 2 

tf  
-- 1 

partition. Therefore mtf(I) = (1 ,2 ;3 ,4 ,5) ,  m (I) = (1;2;3,4;5) and 
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Now we relate feedback for the unit delay case to feedback 

with trigger flip-flop memory elements,  One result  we get is that the  

set of machines which can be  realized without feedback using unit 

delays and the set of machines which can  be realized without feedback 
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using trigger flip-flops a re  disjoint when the  machines a re  completely 

specified. Before we prove this  result  we consider a l e m m a ,  

Result 34 (Lemma).  

Let M be a machine, f:{ s} x {x] -+ {0 ,  13' and Tt'tfltp. Let 

a , b  c { s ]  such that  ~ [ a ]  = ~ [ b ] .  If there exists x c{x] such that f(a,x) 

Consider any  p such that T t t t f I t p .  If p[a] # p[b] then p[S(a,x)] 
4 

# p[6(a,x)] which is  impossible since 6(a,x) = s(b,x).  Thus p[a] = p[b] 

which implie s mtf (7) [a] = mtf (T ) [bl . 
If 6 :  { s ]  x {x] .-) { s] and {xi] 

n n 6 (a ,{x . ]  ) = a if  n =  0 ,  

inductively define &(a,  {xi}1) = 6[6(a, {xi] 

notation we can  prove the following result .  

n is a sequence in  {x] we define 

s ( a , { x . ]  ) = 6(a,x ) if n =  1 and if n >  1 we 
1 1  1 1  1 

n n- 1 ) , x  1. With this  n 

Result 35 (Lemma).  

Let M be a completely specified machine and f: { s}x {XI -+ { 0,  l} t . 
L e t  there exist a ,  b G {  s ]  with a # b and a sequence {xi];-' with q - > 2 in  

{XI such that  &(a ,  Ex.]' ) and 6(b, {x,]l) j a re  specified when 1 < j < q-1 - -  1 1  
j-  1 

and,  in  addition, f[&(a, {xi]jL1),x,l  = f[6(b, {xi], ) , x . ]  for every j 
1 1 
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Proof. 

Since Ira] = I[b], the hypothesis implies that  mj (I)[a] = mj (I)[b] 
Pf Pf 

for a l l  j < q-1. Thus mq-l(I) = 0' and the hypothesis implies that  

&(a, {xi]:-') = 6(b, {xi]:-'). L e t  r be the first  integer such that s (a ,  {x l r )  

= 6(b, {xi]:). Then 1 < r < q-1 and if  a = &(a,  {xi);-') and bl 

r- 1 j = 6(b, {xi), ) then a l  # bl and 6(a , X I  = s ( b l , x J .  Show mtf(I)[all 

= m (I)[b 1 for every j such that j is a positive integer. Clearly Ira1] 

= I[b 1 and since f(a , x  ) = f(bl,xr) and s (a  , x ) = & ( b  , x  ) from Result 

34 this  implies that 

= mtf(I)[b 1. Again from Resul t  34 th i s  implies that  

= mtf(mtf(I))[bll 

mq-l(I)[al1 t f  = mq-l(I)[bll tf where a l  # b l .  Therefore mq-l(I) t f  #$. 11 

Pf - 

i 1  

1 

1 r  

- -  

j 
t f  1 

1 1 r  1 r  1 r  
k mtf(I) [a,] = mtf(I)[bl]. Suppose mtf(I) [a,] 

k k 
1 t f  tf m (m (I))[al] 

k k+ 1 k+ 1 
or m tf (I)[all = m (I)[bll. If we let j = q-1 then tf 

From Result 35 we get the following result on feedback free 

machines . 

Result 36 (Corollary). 

Le t  M be a completely specified sequential machine with q 

states and q > 1. 

i) If mqC1(I) Pf = 8, then m:il(I) # $. 

ii) If mq-l(I) t f  = 8, then mq-'(I) Pf # 8. 

In particular the se t  of machines which can  be realized without 

feedback using unit delays is disjoint from the set  of machines that 
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can  be realized without feedback using trigger flip-flop memory elements. 

Proof. 

i) Since q > 1 there exists a ,  b e { s]  such that a # b.  L e t  

{xi]:-' be  any sequence in {x] .  Since f is a constant,  Result 35 holds 

and mqS1(I) #8. t f  

ii) Suppose mq-l(I) = 
Pf 

tradiction. Therefore mq- '(I) 
Pf 

8, then from i mq-l(I) # ff which is a con- t f  

= 8. 

The last statement follows from Result 33 and 2 6 .  11 

It is clear Result 36 does not necessarily hold i f  the  machine is  

not completely specified. For example, one could consider a machine 

where 6(aIx) is not specified for any  state a and input x. We now turn 

our consideration to  the computation of m (7) .  t f  

, L e  L e t  M be a machine and f: { s]  x {x] -, { 0,1] . Definition 15. 

Let  T be a state partition. 

1. Le t  A(T) = {(b, c) 1 ~ [ b ]  = T [c] and there exists x such that 

f(c,x) = f (b ,x)  and 6(b,x) = 6(c,x)] U { ( b , c ) \  there exists a C { S ]  and 

input x such that  f (a Ix)  = f(b,x), T [a] = ~ [ b ]  and c = 6(a,x) while 

a = 6(b,x) or 6(a,x) = a and 6(b,x) = c].  

# 2 .  Le t  A (7)  be  the smallest equivalence class which contains 

# A(T) and let 6 be the state partition implied by A ( 7 ) .  1 
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Result 3 7 .  

If T abd p l  are defined a s  i n  Definition 1 5  then B 5 mtf(T) .  

Proof. 

Let b, c E [ s] such that @ l[b] = p ,[c]. Let p be a partition such 

that T "tf"p . 
i) Suppose (b,c) E A ( T ) .  If ~ [ b ]  = TIC] and there exists x such 

that f(c,x) = f(b,x) and s(c,x) = ij(b,x) then p[b] = p[c] from Result 34. 

If there exists a E [ S ]  and x c[x] such that f(a,x) = f(b,x), ~ [ a ]  = ~ [ b ]  

and c = s(a,x) while a = 6(b,x), then if  p[a] = p[b] we have that 

~ [ 6 ( a , x ) l  = p[6(b,x)] since T * p " p f l ' p  or p[c] = p[a] = p[b]. If p[a] 

# p [bl, then p [6 (a, x)] # p [6 (b, x)] or p [cl # p[a] which implies p [b] 

= p[cl since p has only two blocks. Therefore p[b] = p[c]. The proof 

for the case a = 6(b, x) and 6 (b, x) = c is identical. 

ii) Suppose b = a , c = a k > 0 and (ao, a l ) ,  (a l ,  az ) ,  . . . , 0 k + l  - 
(ak, ak+l) are all in A ( T ) .  Then from i) p [a,] = p [ai+1] 

0 - -  i < k. Since p is a partition, this implies 

for every i 
1 

p[b] = p[ao] = p[ak+ll 

= p [cl . 
Cases i, ii cover all cases for b and c such that B [b] = p [cl 1 1 

except when b = c which is obvious. Thus 

P [bl = p [cl for every p such that T "pf"p.  Therefore 

= mtf(~)[cl .  This implies that p 5 m (7). 11 

fi l[b] = p [c] implies 

m,,(~)[bl 

t f  



5 6  

I 

It should be noted that A(T)  can  be determined by inspection. 

One has  only to observe that (b ,c)  E A(T)  i f  6(b,x) = 6(c,x) for some x 

with f(a,x) = f(b,x) and i f  any two of a ,  b,  6(a,x), 6(b,x) are  equal 

when T [a] = T [b] and f(a,  x) = f(b, x) then the other two are  a pair in A ( T ) .  

Definition 16 .  Le t  M be a machine and let T , p be s ta te  
i 

partitions such that m (7) > p where i - > 1. 
tf  - i 

1. L e t  B(P ,) = [(pi[b], pi[c]) ) ~ [ b ]  = TIC]  and there exists input 
1 

for a , b  c { s ]  and x s{x]  such that ~ [ a ]  = ~ [ b ] ,  f(a,x) = f (b ,x) ) .  

# 2 .  L e t  B ( e  ,) be the smallest equivalence relation which con- 

ta ins  B(pi)  . Let  p 
1 

be  a partition on { s') defined by B i+ 1 i+ 1 [a] = ~ ~ + ~ [ b ]  

Proof. 

L e t  b ,  c c { s]  such that ~ ~ + ~ [ b ]  = p [c] which implies that i+ 1 
# (p.[c], p,[b]) G B ( p i ) .  Le t  p be a partition such that ~ " p f l ' p .  

1 1 

i) Suppose (pi[c], pi[b]) c B(Bi).  If ~ [ b ]  = T[C] and there exists 

x such that f (b ,x)  = f(c,x) and p.[s(b,x)] = p . [ ~ ( c , x ) l ,  then p[S(b,x)I 
1 1 

= p[6(c,x)] since p 2 pi .  Because ~ " t f " p ,  p[b] # p[c] implies 
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p [6 (b, x)] # p [S (c, x)] , which is a contradiction, thus p [b] = p [c] . If 

there exists a ~ { s ]  , x B{X] such that ~ [ a l  = ~ [ b ] ,  f (a ,x)  = f (b ,x)  and 

@ i[cl = B .[6 (a,x)l while p.[al = p.[6(b, x)]; then p [a] = p[6(b,x)l and 

P ~ C ]  = p[6(a,x)l since p 2 pi. If p[al = p[bl then p[6(a,x)l = p[~(b ,x ) I  

since T p "pf" p which implies p [a] = p [S (a, x)] = p [c] . Therefore p [b] 

1 1 1 

impl ies  pee] # p[a] and therefore p[b] = pee] since p has  only two blocks.  

Therefore (B.[c], p.[b]) e B ( p . )  implies p[bl = p[cl. The c a s e  when ~ . [ a ]  

= 8 ,[6(a,x)] and p .IC] = Bi[6(b,x)l is proved in a similar manner. 

1 1 1 1 

1 1 

when 0 < j < k .  Then from i) pLa.1 = 

0 < j < k .  Therefore p[cl = p[a 1 = p[a 1 = p[bl. 

for every j such that 
1 - -  

0 k+ 1 - -  
Parts i, ii imply that if (pi[cI, pi[bl) 6 B # (p.) ,  then p[bl = p[cl 

1 

Results 37 and 38 imply a way to  compute mtf(T) .  First compute 

as in Definition 1 5 .  Then using B compute B as in Definition 16 .  
1 1 2 

Continue until @ 

Bi+1- 1 

= p ,  for some i - > 1. This must happen since i+l 1 

> p ,  for every i and { s ]  is finite.  Le t  e ( T )  = pi. One must then 

consider only those p > e ( ~ )  to see i f  ~ I ' t f l ' p  when one computes m ( 7 ) .  t f  - 
For a n  example of this consider machine H in Figure 1 2 .  Here 

it is seen by inspection that A(1) = [ (3 ,4) ,  (4, 5),  (3, 5)] which implies 
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(4,3)] and e = (1;2;3,4,5). e could have been easi ly  determined 

from A(1).  Now compute B Again by inspection of Figure 1 2  B ( e  ) 
2 '  1 

= {(1;2)] and B (el) = ~(1;2),(3,4,5;3,4,5),(2;1),(1;1),(2;2). Therefore 

1 1 

-- -- -- -- -- # -- 

-- 
= ( 1 , 2 ;  3 ,4 ,5) .  Compute @ By inspection B ( e  )= cp and therefore 3' 2 -- - - 82 

# B ( B 2 )  = c ( 1 , 2 , 1 , 2 ) , ( 3 , 4 , 5 , 3 , 4 , 5 ) ] .  Hence p = (1,2;3,4,5) = B~ and 3 

therefore e(I) = p 2 .  From Results 37, 38 we know that @(I) < m (I) ~ 

t f  

Hence to compute m (I), we need only consider all 2 block state 

partitions p such that p > @(I) and a n  easy  check shows I"tf"e(1) and 

- 

tf  

- 
hence m (I) = (1 ,2;3,4,5) .  We have made this  computation longer than 

needed. B (  B ,) can  be written down by inspection of the s ta te  table and 

t f  

1 

# can  be  written down directly from B ( B  ,) without looking a t  B ( e  ,) pi+ 1 1 1 

L e t  u s  again consider machine H in Figure 1 2 .  We have already 
-- 

determined that when we begin with I e(1) = (1,2;3,4,5).  Repeat the 

calculations this  t i m e  beginning with T = e(1). Then by inspection A(T) 
---- 

2 
= {(3,5)] and = (1;2;3,5;4). Continuing B(B ) = (p and therefore 1 1 ---- . Thus when we begin with T = @(I) we get e ( T )  = e(e(1)) = (1;2;3,5;4) - 
- B l  

2 2 2 which we label as e (I). e (I) must be less than m (I). Repeat the 
t f  

2 process letting T = 8 (I). By inspection of Figure 1 2  A ( T )  = '9 and 
----- 2 3 ----- 

therefore 8 ,  - 

And e (I) 5 mtf (I). In this  case  e (I) = mtf(I), e (I) = mtf (I) and e3(I) 

= (1;2;3;4;5). Thus e(T )  = e ( e  (I)) = e (I) = (1;2;3;4;5) a - 82 
3 3 1 2 2 

3 
= m (I). To  check a machine for feedback one should do a computation t f  
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a s  above. If one does not end up with the $ partition, the machine 

cannot be  realized with trigger flip-flops using f for feedback. If one 

does end up with the $ partition, then he must continue to  investigate 

by, for example, considering those two block partitions p - > @(I) to see 

if 1 " t f " p .  

Feedback in  Set-Re set Flip-Flop Realizations 

In order t o  determine when a function f can  be used as feedback 

in a machine M realized with set-reset memory elements we define the 

following relations. 

Definition 1 7 .  Let  T and p b e  state partitions in machine M and 

f:{s] x {x] - {O, 13' where t is a positive integer. Then TI'rfl'p iff 

1. p is a 2 block partition 

2 .  7 p " p f " p .  

3.  For every two s ta tes  a ,  b and every input x such that 6 (a ,  x) 

and 6(b,x)  are  specified, ~ [ a l  = ~ [ b ] ,  p[al # p[b] and f(a,x) = f(b,x);  

then p[S(a,x)] = pb(b ,x) l  or 6(a,x) c p r a ]  and 6(b,x) c p[b'J. 

Before we consider the subject of feedback in  set-reset realiza- 

t ions we must prove the next results which are similar to the ones proved 

in  the trigger flip-flop development. 
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Result 39 (Lemma).  

n Let M be a machine and let h: { s ]  -, { 0 , 1 ]  and f:{s] x {x] -+ 

G { 0 , 1 ]  . Let A - < { 1, . . . ,n]  and ge { 1 , . . . I n] but g#A. If for every y 

n 
e {  0 , 1 ]  and for every input x Y (y, x) = y U(yA, f(y, x) , x) + Vg Wh,, f(y, x) x) 

where U > W, then R (y,x) = I (y f(y,x),x) and S (y,x) = H (y f(y,x),x) 

Proof. 

g g 

g g A '  g g A '  - 

Let  R (Y,x) = u(yA, f(y,x),x) and S (y,x) = W(y,, f(y,x),x).  Show 
9 g 

that th i s  is allowable.  That is, show that  i f  y = 1 and Y (y, x) = 0 then 

R (y,x) = 1 and if  y = 0 and Y (y,x) = 1 then S (y,x) = 1. In addition, 
g g g g 

one must show that R and S a re  not both one for any (y, x) . Suppose 
g g 

Yg(y,x) = 0 .  Then if y = 1 U(y,, f(y,x),x) = 0 .  Thus u(yA, f(y,x),x) 

= 1 = R (y,x).  Suppose Y (y,x) = 1 and y = 0. Then W(yA, f(y, x ) )  =1 

= S (y,x). If R (y,x) = 1 then U(yA, f(y,x),x) = 0 and since U - > W 

W(y,, f(y,x),x) = 0 which implies S (y,x) = 0.  If S (y,x) = 1 then 

W(y,, f(y,x) ,x) = 1 and since U 2 W 

R (y,x) = 0. 11 

g 9 

g 

g g 9 

g g 

g g 

U(yA, f(y, x),x) = 1 which implies 

g 

Result 4 0  (Theorem). 

L e t  M be a machine and f:{s] x {x] -, { O ,  13 G . Let M be coded 

where A < { 1, . . , , n] and p = p where 
g - by h into 10, l j n .  Le t  T = 

g e { l ,  ... , n ] .  If TI'rf'lp then R ( y , x ) = I  (y f(y,x),x) and S (Y,x) 

p i  

g 4 A '  g 

= H  ( Y  A '  f(y,x),x)* 
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Proof. 

i) Suppose gsA. Then p > T and since ~' lrfl lp implies T - p  "pfl'p - 
we deduce that ~ " p f " p .  Therefore Y (Y,x) = F ( Y  f (y ,  x) I x) from 

9 9 A '  

ii) Suppose g#A. Then again T p"pf"p and from R e s u  t 2  

y ( Y I X )  = F (y 8y f (y ,x ) ,x ) .  If we let U(yA,d,x)  = F (y , y  = 1 ,d ,x )  
4 g A  9 g A  9 

G & 
and W(y , d , x )  = F (y , y  =O,d,x) for every d ~ { 0 , 1 ]  

U(yA, f (y ,x) ,x)  + ig W(yA, f (y ,x ) ,x ) .  Recall that 

for every d e { O ,  l]  

then Y (y,x) = y 

there are  freedoms on F in  the  proof of Result 25 .  Namely, F (h (a ) ,  

h ( a ) ,  f (h(a) ,  x), x) = h [6  (a, x)] if 6 ( a ,  x) is specified. For every other 

4, (yA I yg, d ,  x) with d G {  0 , 1 ]  can be specified in  any 

manner. We specify it as  follows: 

A g A  9 

9 9 

9 g A  

9 9 

and yA G { 0 , 1 ]  F 
4 

For every (y , y , d , x )  define F (y , y  , d,x)  = F (y , y  , d , x )  
A 9  g n  9 g A  9 

when there is no a c i s ] ,  x S{X] 

6(a,x) is specified. Show when F is so specified that U - > W. Suppose 

W(y,,d,x) = 1. Then F (y , y  = O,d,x) = 1. Claim F (y , y  = l , d , x )  

= 1. This clearly is true from the above statements unless  there exists 

such that f (a ,x)  = d,  h (a) = y and 
A A 

9 

g A  9 912 9 

a , b  e { s ]  and x ~ { x ]  such that (y  , y  = 0) = (hA(a) ,h  (a ) ) ,  (y , y  = 1) 
A 9  9 1 1 9  

= (hA(b) ,hg(b)) ,  f(a,x) = f(b,x) = d and 6(a,x) and 6(b,x) a re  specified. 

But hA(a) = h (b) implies ~ [ a ]  = ~ [ b ]  and h (a) = h (b) implies p[al # p[b]. 
A g g 
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Since h (b) = 1 from F (h ( a ) , h  (a) ,  f (h(a) ,x) ,x)  = F (y , y  = O,d,x) =1 

we infer that h [ ~ ( a , x ) l  =1 or s(a,x) 8 p[b]. But since ~IIrfl'p this  implies 

&(b,x) e p[b] and h h(b ,x) ]=F (h (b) ,h  (b), f(h(a),x),x) = F (y , y  

= l , d , x )  =1. Therefore W(y , d , x )  =1 implies that  F (y , y  = l , d , x )  =1 

which implies U(y , d, x) =1. Therefore U 2 W. From Result 39 this  

g g A  g g A  g 

g 

9 g A  9 g A  g 

A g A  g 

A 

implies the theorem. 11 

Result 4 1 (Theorem). 

n L e t  M be a sequential machine coded by h into {0 ,  13 . L e t  

f:{s] x {x] -, [ O ,  l ]  . If M is realized by set-reset  flip-flops such .e 

that R (y,x) = I (y 

g c { 1, . . . , n] and A < { 1 I . . . , n] then T "rf"p where T = n p , and p = p . 
Proof. 

f(y,  x) , x) and Sg(y, x) = Hg(yA I f(y,  x) I x) where g g A '  

A 1  g - 

p > T this  implies T1'pf"p and T ' I t f l ' p .  - 

ii) Suppose g#A. Then as before Y (y,x) = y (y f(y,x) 
9 g g A '  

+ H (y f (y ,x) ,x)  = F (y , y  , f (y ,x) ,x) .  From Result 25 this  implies 

~ . p l ' p f " p .  L e t  a r b ,  ~ [ s ]  and x e{x] such that ~ [ a ]  = ~ [ b ] ,  p[al #p[bl ,  

and f(a,x) = f (b ,x) .  Note that ~ [ a ]  = ~ [ b ]  implies h (a) = hA(b) and 

9 g A '  g 

A 



63 

p[al # p[bl implies h [a] # h [b]. Suppose 6(a,x) g p[b] and a l so  suppose 

h [a] = 1. Then h b(a ,x)]  = 0 which implies Y (h(a) ,x)  = 0 = 

f (h(a) ,x) ,x)  or, equivalently, I (h (a),  f (h(a) ,x) ,x)  = 1. Since I = R 
9 9  

and R = 1 implies S = 0 we must have S = H (h  (a ) , . f (h(a) ,x) ,x)  = 0 
9 9 9 9 - A  

which in  turn equals  H (h (b), f (h(b) ,x) ,x) .  Therefore Y (h(b),x) = 0 

which implies that  s (b ,x)  c p[b]. Suppose h [a] = 0. Then h [6(a,x)l =1 

which implies Y (h(a) ,x)  = 1 = H (h (a), f (h(a) ,x) ,x) .  This implies that  
9 g A  

S (h(a) ,x)  = 1 and therefore R (h(a) ,x)  = 0 = I (h (a), f (h(a) ,x) ,x) .  Since 
9 9. g A  

Ig(hA(a)# f(h(a) ,x)  = I (h  (b), f (h(b) ,x) ,x)  and h (b) = 1 th is  implies that  
g A  9 

Y (h(b),x) = 1 Therefore h k(b,x)I = 1 and s (b ,x)  g p[b]. Hence ~ ' ' r f ' l p  

With these  resul ts  out of the way we a re  ready to define the con- 

9 9 

(h (a), 9 9 9 g A  

g A  9 

9 9 

9 9 

cept  of feedback in  machines realized with set-reset memory elements. 

This definition is similar to Definition 13. 

Definition 18. L e t  M b e  a machine and f:{s] x {x] + { O ,  l ]  4, . 
M can  be realized with set-reset flip-flops using f for feedback iff M 

n can  be coded by h into { 0 ,  13 such that  

A ] a set of positive integers such There exists {A,, . . . I k 
1 

that  u e v implies A < A . 
u v  

2 .  If isA then R.(y,x) = I . ( f (y ,x) ,x)  and Si(YIx) = Hi(f(Y,x)tx) 

n 
1 1 1 

and  x e {x] . for every y c { 0 ,  13 

3.  If i . g  Ar -Ar  where 1 < r < k then Ri(y,x) = I.(Y 
- 1 Ar-1 

, f (y ,x ) ,x )  - 
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4 .  n p i  = JJ where p .  is the partition associated with h . 

Again we define t h e  m operator this  time with respect t o  "rf", 

1 i *k 

and then prove s o m e  results concerning it. 

Definition 19 .  Let M be  a machine and f:{s] x {x] 4 { 0 ,  13 4, . 
L e t  T be a state partition. 

rf 
1 

i) m ( 7 )  = I I { p  I~I ' r f l 'p] .  If { p  1~"r f l 'p ]  = c p ,  then define 

1 1 m ( 7 )  = I .  We frequently call  m (7) by m (7) deleting the 1. 
rf rf rf 

i+ 1 i 
rf rf rf ii) m ( 7 )  = m (m (7)) for i in [ 1 , 2 , .  . . I .  

Result 42. 

Le t  T ,T and p be state partitions in a machine M and 

.e 
1' 

f:{s] x [x] 4 { 0 ,  13 . If T 

Proof. 

< T and ~ " r f ' l p ,  then T 'Irf"p. 
1- 1 

L e t  a , b  ~ [ s ]  such that T [a] = ~ ~ [ b ] ,  f(a,x) = f (b ,x) ,  arid 6(a,x) 

- 1' 

1 

and 6 (b, x) a re  specified.  T ,[a] = T l[b] implies T [a] = T [b] since T > T 

Suppose pra] = pcbl, then p[6(a,x)l = p[&(b,x)] since T1*p"pf"p. 

Suppose p[al # p[bl then 6(a,x) c p[bl implies 6(b,x) e p[bl since 

T l'rf I' p . 11 

Result 43 .  

Le t  T and T be  state partitions. If T 2 T 
1 rf 1 

then mrf(T) m (T ) .  



65 

Proof. 

Le t  p be such that ~ l ' r f ' l p .  Then T ~ I ' I - ~ ' ' ~  from Resul t  42  which 

implies m r f ( d  m,h l ) .  11 

Result 44 .  

.e i+ 1 L e t  M be  a machine and f:{s] x {x] 4 { 0 ,  13 . Then m (I) 5 rf 
i 

mrf(I) for every i e{1 ,2 , .  ..I. 
Proof. 

2 i) Show m (I) L mrf(I). Clearly m (I) < I .  Therefore rf rf - 

rf rf - rf - 
2 

111 (I)) < mrf(I) from Result 43. Thus m 

ii) Suppose m;,(I) 5 mj-l(I) with 2 - < j .  Then mrf(m5f(I)) - < 

(I) < mrf(I). 

rf 

j- 1 (I)) from Result 43 .  Thus mrf j+ 1 (I) 5 mrf(I). j 11 mrf(mrf 

If M is a q state machine then s ince I can  be refined at most 

q-1 t i m e s  mq-l(I)  = mq (I). With th i s  we a re  ready t o  s ta te  and prove 
rf rf 

the main resul t  of this section. 

Result 45  (Theorem). 

.e Let  M be a q state machine and f:{s] x {x] 4 {0 ,  l ]  . M c a n  

be  realized using set-reset  flip-flop memory elements for feedback iff 

Proof. 

Suppose M can  be realized using f for feedback. Then M can 

n be  coded by h into { 0 ,  13 such that  Definition 18 is satisfied.  L e t  



6 6  

- 
I- - n p j .  

'r 
r 

1. From 2 of Definition 18 and Result 4 1  1"rf"p. when icA 
1 1 

and p is the partition associated with h 
i i '  

Therefore, mrf(I) 5 npi = T ~ .  
A 

2 .  From 3 of Definition 18 and Result 4 1  (n p ,)"rf"pi for 
Ar- 1 J 

. This together with Result 42 implies that  n every i A 

that is, T "tf"p.  for every i g A  , 

p . " t f " p  ; 
r- 'r- 1 i 

r- 1 1 r 

Ar-1 J 

r- 1 
3. From 1 we know m rf (I) - < I- 1' Assume mrf (I) for 

Show every r such that  2 < r < k where k is given by Definition 18 

m -(I) I- . From 2 m.-,(T- ,) 5 p i  - T ~ .  From the inductive hypothesis 
lLr 

and Result 43 mrf[mrf r- 1 (I)] 5 m (T rf r-1 - r '  

- 
- r 

1 1  .- - - I 

< T Thus mrf(I) r 5 I - ~ .  

4 .  Show mq-l(I) = a'. From 4 of Definition 18 n p = a'. From 
l\k rf 

k k 
l\k rf 3 mrf (I) 5 I- 

9- 1 implies m (I) = a'. rf 

= n p = a'. Therefore m (I) = a'. From Result 4 4  th i s  

We now consider the converse. Suppose m 9- 1 (I) = a'. Let  k 
rf 

k 
rf b e  the f i r s t  integer such that  m (I) = ,$. Then 1 < k '< 9-1. - -  

1. L e t  E l  = {pilicAl] be a set of partitions with the properties 

that 1"rf"p. for every is/\ and n p i  = mrf(I). Such a set exists since 

the set { p I 1"rf I t  p 3 has  the properties . 
A 1  1 1 

2 .  L e t  E = { p , I icA ] be a set of partitions with the properties 2 1 2  

that  E2 > E mrf(I)I'rf"p for every is/\ and n p = m 2 (I) .  Again, 
1' i 2 i rf 

such a set exists s ince { p  Im (1)"rf"p) has  the desired properties. rf 
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2 
This follows from Result 42 and the fact that mrf (I) < mrf(I). 

3 .  L e t  E k  = { p i  I isA ] be a set of partitions with the properties k 
k- 1 k that E > Ek m ( 1 ) " t f " p .  for every isA and n p i  = mrf (I). The 

Ak k - rf 1 k 

set { p  ]mk-l(I)"rf''p] has  these properties. This follows from Result rf 

4 2  and the fact that  m (I) < mrf (I). 
k k- 1 
rf 

4 .  For every isA let h .  b e  the function assoc ia ted  with p , k 1 i 
k 

1 1 1 rf i .e.  h.:{s] 

= ll p i ,  h is a 1-1 coding function, Note  that the range of h is { 0 ,  l]'kk. 

{O, l )  and h.(a) = h.(b) e pi[al = pi[bl. Since m (I) = 

Ak 

5 .  From Result 4 0  since I"rf"p, for every i in A Ri(y,x) 
1 1 

n 
= I , ( f (y ,x ) ,x )  and S.(y:,x) = Hi(f(y,x) ,x)  for every Y G f O ,  13 . Also, from 

and 
1 1 

r- 1 r- 1 
Result  40 s ince n p i  = mrf (I) and m (I)"rf"pi, when i E A -A 

rf r r-1 Ar- 1 
2 < r < k, then Ri(y,x) = I i ( ~ ~ r  

Thus Definition 18 is satisfied and M c a n  be  realized with set-reset  

f(y,  x), x) and S i b ,  x) = H i ( y ~  I f (y ,  XI ,  x) 
r- 1 - - -  

flip-flops using f for feedback. I\ 
I 

For a n  example of the previous resu l t s  consider machine L in 

Figure 14. This machine can be  realized without feedback using set- 

rese t  flip-flops. This can  be seen as follows. Let f be a constant.  
-- 

The only partitions p such tha t  Il'rfl'p a re  ( 1 , 2 , 3 , 5 2 )  and (1 ,2 ;3 ,4 ,5) .  
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--- -- 
Thus mrf(I) = (1,2;3,5;4).  If p is one of (1,2,3,5;4),(1,2;3,4,5), 

(1,2,3,4:?),(1,4,5:2,3) then (1,2;3,5;4)"rf"p. Thus m (I) =ff and 

machine L can be  realized without feedback. This is done in  Figure 14. 

2 -- --- 
rf 

-- -- 
= (1 ,2;3,4,5) ,  p 2  = (1,2,3,5;4) and p = (1 ,4 ,5 ;2 ,3) .  Then 3 Let P 1  

- A l  - {1 ,2 ]  and A 2  = {3] satisfies the properties given in the proof of 

Result 45.  In this  case E - - { p l ,  p 2 ]  and E2 = {p,]. A coding function 1 

h corresponding to p l ,  p 2  and p is given in  Figure 14 .  3 

The following results relate set-reset  feedback realizations t o  

unit delay feedback realizations. 

Result 4 6 .  

8 L e t  M be a machineand f :{s] x {x] + [ O , l ]  . L e t  T and y be  

state partitions such that ~ " p f l ' y .  If p is a two block state partition 

such that p > y then 7'lrf''p. - 

Proof. 

Le t  a , b ,  ~ { s ]  and le t  x e [ x ]  such that ~ [ a ]  = ~ [ b ] ,  f(aPx) 

= f (b ,x)  and &(a,x) and 6(b,x) are  specified. Since ~ " p f ' l y ,  this  

Observe that any state partition y = n[p I p - > y and p is a two 

block partition]. With th i s  in mind we can  easi ly  prove the next result .  



69 

100 

100 

1 0 1  

110 

1 0 1  

Inputs 

0 1 

000 

001 

001 

001 

000 

1 

4 2~ 3 4 

5 

6 

0 1 

1 000 

2 001 

3 101 

4 110 

5 100 

f = constant 
--- 

m '(I) = (1,2;3,5;4) rf ----- 
m 2(1) = (1;2;3;4;5). rf 

Machine L 

R = x  S = O  2 2 

0 1 0 1 

(Y1 I Y2 I Y3) 

Figure 14. 

dOd 

ddO 

d d l  

( s l  I s2 I s3) 
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Result 47. 

L e t  M be a machine and f:{ s] x {x] + { O ,  1) I2 . L e t  T be a state 

partition. Then m (7)  > m ( 7 ) .  Pf - rf 

Proof. 

Le t  y be a partition such that ~ " p f l ' y .  L e t  p be  a 2 block 

partition greater than y .  Then ~I'rfI 'p from Result 46. This implies 

m (7) 2 mrf(T)* 11 Pf 

This implies immediately a result  relating set-reset  flip-flop 

I 
realizations to unit delay realizations.  Results 43 and 47 imply 

i 
Pf - rf immediately that for every i in  { 1 , 2 ,  . . .] that  m (7)  > mi ( 7 ) .  Since 

m (7)  > m (7)  from Result 47 and by induction if  m i- 1 i- 1 
(7)  2 mrf (7)  

Pf - rf Pf 
i- 1 i- 1 i- 1 then m [m (711 1 mrf[mpf (7)I.L mrf(mrf (7))  from Results 43 and 47. 

Pf Pf 

This implies the following result. 

Result 48 (Theorem). 

If machine M can  be realized with unit delays using f for feed- 

back, then M can  be realized with set-reset  flip-flop using f for feedback. 

Proof. 

q- 1 
Pf 

The hypothesis implies from Result 2 7  that  m (I) = A where q 

is the number of states. But this  implies mq-'(1) = ,d. From Result 45  

th i s  implies the theorem. 11 
rf 
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It should be noticed in Figure 14  that machine L cannot be  

realized with unit delays using f = constant for feedback. To deter- 

mine if  a machine M can be realized using f for feedback it is necessary 

to  compute m (7) for various T which is not a n  easy  problem. In general 

one must consider all two block partitions p to see if ~ " r f " ~ .  For a q 

state machine there are  Z q - l - l  such partitions. It is wise to compute 

m (7) f i rs t .  From Result 47 we know that m (7) < m (T), therefore, it 

is not necessary to consider these  p such that p > m (7). 

rf 

Pf rf - pf 

- Pf 

In this  chapter we have developed a method for determining when 

a machine can  be realized using a function f for feedback with either set- 

reset  or trigger flip-flop memory elements. This method is more difficult 

to apply than the one given in Reference 3 for the unit delay c a s e .  We 

have also shown in Results 36 and 4 8  that for a given machine its feed- 

back properties will be different for trigger, set-reset and unit delay 

type realizations. 

memory element he wants t o  use before making a study of the feedback 

characterist ics of a machine. 

Thus in  general one must f irst  decide the type of 
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